

Pair production and γ -ray emission in pulsars: A modern view

Andrey Timokhin

C. Kalapotharakos, A.Harding, D.Kazanas

NASA Goddard Space Flight Center

Fifth International Fermi Symposium

A. Timokhin (GSFC)

Pairs and γ -rays in Pulsars

Pulsar: rapidly rotating magnetized neutron star "Electric lighthouse"

Pulsar: Cosmic Electrical Lighthouse

NB: Pulsars are non-thermal emitters

Plasma creation in the polar cap

Cascades are electromagnetically driven

NASA

Limit cycle: series of discharges

No particles extraction from the NS

Free particle extraction from the NS

Full cascade

Synctrotron cascade

Curvature Radiation

Cascade Efficiency

Fraction of particle energy going into synchrotron and curvature radiation

Particle acceleration

Multiplicity of polar cap cascade: $\kappa \sim 10^5$

Dependence on ρ_c partially cancels out:

- small $\rho_c \rightarrow$ high splitting efficienly, but low primary particle energy
- large $\rho_c \rightarrow$ low splitting efficienly, but high primary particle energy

• electrons • positrons • γ -rays

- · Low heating of NS surface
- Duty cycle: can be as low as $h_{\rm gap}/R_{\rm NS}\sim 1/100$ (for Crab)

Discharge: super-GJ SCLF

• electrons • positrons • γ -rays

- · Low heating of NS surface
- Duty cycle: ~ 1/few

Electric field in resistive magnetosphere

Curvature radiation in magnetosphere with non-unifrom $\boldsymbol{\sigma}$

 $\frac{d\gamma_L}{dt} = f \frac{q_e c E_{\parallel}}{m_e c^2} - \frac{2q_e^2 \gamma_L^4}{3R_{cp}^2 m_e c}$ $\mathbf{v} = \left(\frac{\mathbf{E} \times \mathbf{B}}{B^2 + E_0^2} + f\frac{\mathbf{B}}{B}\right) \mathbf{c}$ $\alpha = 45^{\circ}$ $\alpha = 90^{\circ}$ $\sigma \rightarrow \infty$ FFE σ : High & Finite

γ -ray Emitting Regions

Peak Separation(Δ) vs Radio Lag (δ)

Conclusions

- Particles can be accelearted faster and at lower altitudes
- γ -ray emission from polar caps is at lower energies (~ 10 100 MeV)
- Maximum multiplicity of polar cap cascades $\kappa \sim 10^5$
 - Maximum multiplicity is not sensitive to pulsar parameters
 - Plasma distribution is non-uniform
 - Inclinations angle should be very important factor determining the overall pulsar pair multiplicity
- The bulk of γ-ray emission seems to come from the current sheet region outside the light cylinder