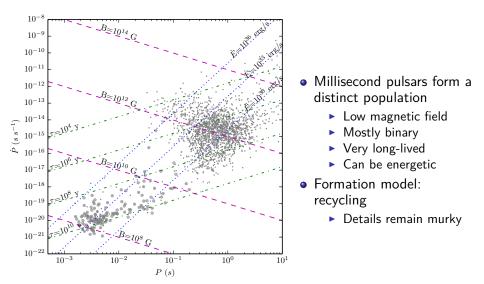
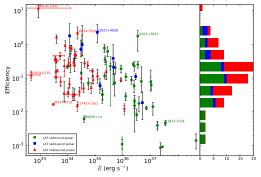

Millisecond Pulsar γ -ray Emission: A Sign of Binary Interaction?

Anne Archibald (archibald@astron.nl)

ASTRON


2014 October 22

<ロ> (四) (四) (三) (三) (三)


- 2

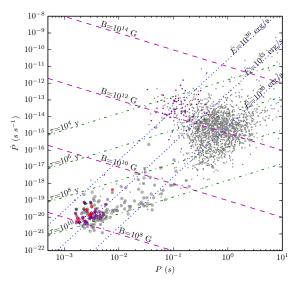
Pulsars

Pulsars from the ATNF catalog

Pulsar γ -ray emission

Abdo et al. 2013 (second Fermi pulsar catalog)

- The pulsar mechanism generically produces $\gamma\text{-rays}$
- Millisecond pulsar γ -ray efficiency not unusual
- Pulsars are *steady* γ -ray sources (mostly)

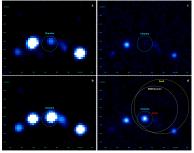

"Spiders"

There are two peculiar classes of MSPs, collectively called "spiders":

- ullet MSPs in tight binary orbits ($\lesssim 1$ day) with low-mass companions
- Show signs of binary interaction, including some or all of:
 - Radio eclipses (variable, frequency-dependent)
 - Companion irradiation
 - X-rays from an intrabinary shock
 - Orbital period variations
- Divided based on companion mass:
 - Black widow: $\lesssim 0.1 M_{\odot}$, degenerate, not Roche-lobe-filling
 - ▶ Redback: \sim 0.1–0.6 M_{\odot} , main-sequence-like, usually Roche-lobe-filling

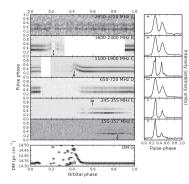
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Spiders



- Few were known until recently
- Many new spiders found based on Fermi observations
 - ► High Ė?
 - Selection effects?
 - Non-pulsar γ-rays?

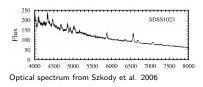
Redbacks (red) and black widows (black)


Transition objects

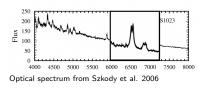
- Three objects have been observed to move between radio pulsar and accretion-disc states:
 - PSR J1023+0038: radio pulsar to accretion-disc state (plus past accretion-disc episode)
 - M28I: radio pulsar to polar-cap accretion back to radio pulsar
 - ▶ XSS J12270-4859: faint accretion-disc state to radio pulsar

X-ray image of the core of M28I before and during activity, from Papitto et al. 2013

- Radio state:
 - Eclipsing radio pulsar
 - $L_X \lesssim 10^{32} \text{ erg/s}$
- Accretion-disc state:
 - X-ray pulsations
 - $L_X \approx 10^{36} \text{ erg/s}$
 - Thermonuclear bursts
 - Continuum radio emission
 - Peculiar rapid variability
 - No radio pulsations
- Transitions seem to take < days to months
- Evidence for multiple transitions in the last few years
- 5.5 kpc


Radio eclipsing of PSR J1023+0038

• Radio state:

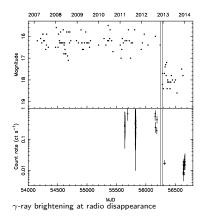

- Eclipsing radio pulsar
- Mildly heated G-coloured companion
- Absorption-line spectrum
- Orbital period variations
- $L_X \approx 3 \times 10^{32} \text{ erg/s}$
- X-ray pulsations
- X-ray intrabinary shock

- γ-ray pulsations
- 1.35 kpc

- E - N

- Historical episode:
 - Observed only optically
 - Occurred in 2000/2001
 - Lasted 1.5–3 years
 - Optical brightening, flickering
 - Emission line spectrum with double-peaked lines
 - X-ray upper limit $\sim 5 \times 10^{33}$ erg/s
- 1.35 kpc

- Historical episode:
 - Observed only optically
 - Occurred in 2000/2001
 - Lasted 1.5–3 years
 - Optical brightening, flickering
 - Emission line spectrum with double-peaked lines
 - \blacktriangleright X-ray upper limit $\sim 5 \times 10^{33}$ erg/s
- 1.35 kpc



 γ -ray brightening at radio disappearance

- Current accretion-disc state:
 - Began late 2013 June
 - Radio pulsations disappeared
 - Emission line spectrum with double-peaked lines
 - \blacktriangleright X-rays variable state-switching 2.5 \times $10^{33}~erg/s$
 - Variable flat-spectrum radio continuum suggestive of a jet
 - γ-ray brightened by a factor of 5

• 1.35 kpc

XSS J12270-4859

- Accretion-disc state:
 - X-ray variability
 - $L_X \sim 10^{35} \text{ erg/s}$
 - Emission-line spectrum
 - ▶ γ-ray emission
- Current radio-pulsar state:
 - $L_x \sim 10^{32} \text{ erg/s}$
 - Eclipsing radio pulsar
 - Mid-G donor star (no emission lines)
 - Decrease in γ-ray emission by a factor of 1.5-2
- 1.4-3.6 kpc

What is happening in these transition objects?

- Radio pulsar states are typical redbacks
- M28I accretion-disc state nearly normal AMXP
 - M28I is too far to easily study faint accretion states
- J1023, XSS J12270 accretion-disc states peculiar:
 - Very low luminosity propeller mode?
 - γ-ray emission
 - J1023 state-switching
- What triggers state switching?
 - Orbital period variations possibly due to companion shape changes may produce Roche-lobe overflow
 - Radio ejection mechanism may produce bistable state

Key puzzles

- Why have these systems stopped being full-fledged LMXBs?
- Do other LMXBs enter such low-luminosity accretion-disc states?
- What is going on in these peculiar accretion-disc states?
- How do these systems produce γ -rays?
- What is the ultimate fate of these systems?

