

Spectrum and Morphology of the Fermi Bubbles

Anna Franckowiak

Dmitry Malyshev & Vahe Petrosian SLAC/Stanford

for the Fermi-LAT Collaboration

5th Fermi Symposium, Nagoya, Japan

- 50 months of data
- Pass 7 reprocessed data set
- Ultraclean class
- Galactic plane masked for |b| > 10°
- Data are binned
 - 25 logarithmic energy bins from 100 MeV to 500 GeV
 - Spatial binning with HEALPix (0.9° resolution)

Galactic Diffuse Modeling

Two methods

Gamma-ray pace Telescope

- One based on Galactic propagation code GALPROP
 - Assumptions about CR source distribution etc.
- The other one data driven
 - Does not depend on GALPROP
 - Uses features of gamma-ray data to define templates for Galactic diffuse components
- Combination of both methods gives a handle on systematic uncertainties

Bubble Template

- Fit diffuse model templates to data (signal region masked)
- Define bubble template from residuals (integrated from 6.4 to 300 GeV)

Bubble Template

- Fit diffuse model templates to data (signal region masked)
- Define bubble template from residuals (integrated from 6.4 to 300 GeV)

Significance of integrated residuals for E = 6.4 - 289.6 GeV

Bubble Template

- Fit diffuse model templates to data (signal region masked)
- Define bubble template from residuals (integrated from 6.4 to 300 GeV)

Spectrum

Gamma-ray Space Telescope

Gamma-ray luminosity: $(4.4 \pm 0.1[\text{stat}]^{+2.4}_{-0.9}[\text{syst}]) \times 10^{37} \text{ erg s}^{-1}$

 North and South Bubble have similar spectrum

 All spectral variations within systematic errors

Substructure – "Cocoon"
Space Telescope
Excess emission in South East of the bubbles

Variation in spectral shape within systematic errors

Significance of integrated residuals for E = 6.4 - 289.6 GeV

No evidence for a pair of jets as claimed in Su and Finkbeiner (ApJ 753, 2012)

Boundary of the Bubbles

Dermi Gamma-ray Space Telescope

Leptonic, Hadronic, Gin & Tonic?

Dermi

A. Franckowiak

 Assuming that the microwave haze and the gamma-ray bubbles are produced by the same population of electrons: hadronic model fails to describe the spectral shape

- Gamma-ray spectrum
- Microwave haze
- No spectral changes
- Narrow boundary
- Absence of a visible shock front

- Gamma-ray spectrum
- Microwave haze
- No spectral changes
- Narrow boundary
- Absence of a visible shock front

Possible leptonic scenario: (Mertsch, Sarkar, Guo, Mathews etc.):

- Jets from the black hole create shock front
- Shock front dissipates, but leaves plasma turbulences behind
- Electrons are accelerated on the turbulences with a characteristic time less than the cooling time

Possible hadronic scenario: (Crocker, Aharonian):

- Wind from SNRs produces CR during several billions of years
- Magnetic fields confine the CR in the bubble volume
- WMAP haze produced by ~ 30 GeV electrons in the SNR wind which have a characteristic cooling time ~ 10 Myr

Thank you

A. Franckowiak

BACKUP

3

Gamma rays in the bubbles are mainly produced by ~ 1TeV electrons: ~ 0.5 Myr cooling time

Gamma-ray

Space Telescope

 t_{cool} < $t_{formation}$ \rightarrow Expansion speed of the bubbles of ~20,000 km/s

Reacceleration? E.g. plasma wave turbulences (Mertsch & Sakar, 2011)

Gamma-ray Space Telescope

- Does not depend on GALPROP
- Does not assume azimuthal symmetry (e.g. violated for spiral arms)
- Gas maps used to trace gamma-ray emission in small patches
 - H I and CO survey, SFD dust map
 - Scaling factor is proportional to line of sight cosmic-ray density

- Does not depend on GALPROP
- Does not assume azimuthal symmetry (e.g. violated for spiral arms)
- Gas maps used to trace gamma-ray emission in small patches
 - HI and CO survey, SFD dust map
 - Other components (IC, bubbles, Loop I) are assumed to be smooth or not correlated with the gas and are modeled by spatial polynomial

- After subtraction of the gas component, the IC is modeled with a bivariate Gaussian along the Galactic plane
- Other components (Loop I and bubbles) are estimated with Gaussian perpendicular to the plane

- Added in Instrument related: quadrature
 - Systematic error in the effective area (2012 ApJS, 203)
 - Galactic modeling:
 - The choice of the input GALPROP configuration might influence the extracted bubble features
 - Cosmic-ray source distribution:
 - Pulsars, SNR
 - Size of cosmic-ray confinement volume (halo size)
 - Cylindrical geometry with R = 20, 30 kpc and z = 4,10 kpc
 - Spin temperature (optical depth correction of the H I component obtained from 21cm survey)
 - T = 150K, optically thin
 - Loopl template
 - Bubble template
 - Alternative analysis method based on fits in local patches

Gamma-ray Space Telescope

Energy in electrons $(1.0 \pm 0.2[\text{stat}]^{+6.0}_{-1.0}[\text{syst}]) \times 10^{52} \text{ erg}$

Synchrotron emission

Gamma-ray Space Telescope

Hadronic gamma-ray spectrum

ermi

Gamma-ray Space Telescope

 erg

Energy density

Gamma-ray Space Telescope

Sermi

Gamma-ray Space Telescope

Electron and proton spectral parameter

 Well described by log parabola or power law with exponential cutoff: cutoff at ~110 GeV, index 1.9

each dot represents a different diffuse model realization

No spectral variation in latitude stripes within systematic ۲ uncertainties

Sermi Gamma-ray Space Telescope

Gamma-ray Space Telescope

Neutrino from the Fermi Bubbles

- various energy cutoffs tested
- no statistically significant excess of events is observed → upper limits on the neutrino flux

 No significant residuals found aligned along a specific direction that could be interpreted as a jet

Boundary of the Bubbles

Space Telescope

No variation with energy found, but some variation with position

45

- Leptonic models can explain microwave haze for B~8µG
- Drop in magnetic field at latitudes of |b| ~35° could explain different latitudinal extension

0

-90

-45

