THE FIRST FERMI-LAT SNR CATALOG: MULTIWAVELENGTH CONTEXT AND COSMIC RAY ENERGETICS

T. J. Brandt¹ F. Acero, F. de Palma, J. Hewitt, M. Renaud on behalf of the Fermi-LAT Collaboration ¹NASA / Goddard, Greenbelt, MD

5th Fermi Symposium Nagoya, Japan 22 Oct 2014

Fermi Detected γ–ray Emission

Data:

- > 4yrs' exposure
- > P7v6

Fermi-Detected γ–ray SNRs

- 13 identified SNRs, including
- 9 interacting
- 4 young SNRs

Fermi-Detected γ–ray **SNRs**

- 13 identified SNRs, including
- 9 interacting
- 4 young SNRs

counts

Fermi-Detected SNRs

13 identified SNRs, including

- 9 interacting
- 4 young SNRs

+ 43 2FGL candidates, excluding identified PSRs, PWN, & AGN

SNR Catalog:

To better understand SNRs in a statistically significant manner, within a MW context.

» Systematically characterize GeV emission in regions containing SNRs,

- > Determine the characteristics of the population of GeV SNRs
- > Examine multiwavelength (MW) correlation(s),
- > Constrain known SNRs' contribution(s) to the Galactic CR population

With particular efforts from:

- F. Acero, J. Ballet (CEA-Saclay/France)
- J. Cohen, J. W. Hewitt (NASA/Goddard)
- F. de Palma (INFN/Bari), G. Johannesson (U. Iceland)
- M. Renaud (LUPM), L. Tibaldo (SLAC),
- B. Wells (UCSC)

Data Set

- > 3 years of P7SOURCE V6 LAT data
- > E: 1-100 GeV
- Region Of Interest: 10° around each SNR

Characterize GeV Emission: Analysis Procedure

SNR Catalog:

> Fermi-LAT has the ability to spatially resolve a large number of the 279 known SNRs.

Classification

Quantify spatial overlap:

60

40

20

0

1.0

0.8

0.6

0.4

0.2

0

0

0

0

0.2

0.4

Extension Overlap

0.6

0.8

1.0

0

20

40

60

Localization Overlap

Classification

Use measure of chance coincidence in mock catalog to estimate false alarm rate and error. Set thresholds to 0.4: <25% false-positive rate

Quantify spatial overlap:

60

40

20

0

1.0

0.8

0.6

0.4

0.2

0

Localization Overlap

SNR Catalog: Results!

Characterized 279 regions containing known radio SNRs:

>109 candidates have significant GeV emission:

- > 4 identified as other sources (Crab, binary, and PWN/PSR)
- > 32 candidates pass classification threshold: (location and extension overlap fractions ≥0.4)
 - >16 extended: 3 new!
 - >16 pointlike hypothesis preferred: 7 new!
 - > 2 have logP spectra (in 1-100GeV energy range)
- >242 flux upper limits at radio position and extension
 - > for those which are significant but don't pass classification: both candidate parameters and radio SNR UL reported

GeV v Radio Radius

Classified GeV candidates tend to correlate with their radio size:

GeV Flux v Index

Candidates span 2 orders of magnitude in flux and from 1.5 - 5.0 in index, despite examining only 1-100GeV energy range.

Radio-GeV Correlation?

Radio synchrotron emission indicates the presence of relativistic leptons. LAT-detected SNRs tend to be radio-bright:

Radio-GeV Index

If radio and GeV emission arise from the same particle population(s), under simple assumptions, the GeV and radio indices should be correlated:

GeV-TeV Index

GeV-TeV Index

Age v GeV Index

Young SNRs tend to be harder than older, interacting SNRs.

Flux v Radio Size

No clear correlation nor separation between classes:

 10^{-7} **Preliminary** Candidates tend to: ∳ > span the range of 1-100 GeV Flux [ph cm $^{-2}$ s $^{-1}$ ₫ known sizes φ φ φ 10^{-8} > fill in regions w $\overline{\Phi}$ previously fewer known sources => > ability to make more statistically robust 10^{-9} population statements! upper limits (i=2.5, 99%) ULs, interacting 10^{-10} ∇ 10^{-2} 10^{-1} 10^{0} (i=2.5, 99%) Radio Diameter [deg] ULs, young ∇ (i=2.5, 99%)

We can relate our SNR flux measurements to the energy imparted to CRs:

$$F(1-100 \,\text{GeV}) \approx 10^{-8} \frac{\varepsilon_{\text{CR}}}{0.1} \times \frac{E_{\text{SN}}}{10^{51} \text{ergs}} \times \frac{n}{1 \,\text{cm}^{-3}} \times \left(\frac{d}{1 \,\text{kpc}}\right)^{-2} \text{cm}^{-2} \text{s}^{-1}$$

where we assume

- > all emission is hadronic in origin,
- \triangleright E_{CRmax} $> \approx 200 GeV$, and

> $\Gamma_{\rm CR} \approx 2.5$

 ϵ_{CR} is the content in particles accelerated up to the observation time relative to the SN explosion energy which, under the assumption that energy losses & escape are negligible, is the hadron efficiency.

We can relate our SNR flux measurements to the energy imparted to CRs:

$$F(1-100 \,\text{GeV}) \approx 10^{-8} \frac{\varepsilon_{\text{CR}}}{0.1} \times \frac{E_{\text{SN}}}{10^{51} \text{ergs}} \times \frac{n}{1 \,\text{cm}^{-3}} \times \left(\frac{d}{1 \,\text{kpc}}\right)^{-2} \text{cm}^{-2} \text{s}^{-1}$$

where we assume

- > all emission is hadronic in origin,
- $E_{\rm CRmax} > \approx 200 {\rm GeV}$, and

 $\Gamma_{\rm CR} \approx 2.5$

 ϵ_{CR} is the content in particles accelerated up to the observation time relative to the SN explosion energy which, under the assumption that energy losses & escape are negligible, is the hadron efficiency.

We can relate our SNR flux measurements to the energy imparted to CRs:

$$F(1-100 \,\text{GeV}) \approx 10^{-8} \frac{\varepsilon_{\text{CR}}}{0.1} \times \frac{E_{\text{SN}}}{10^{51} \text{ergs}} \times \frac{n}{1 \,\text{cm}^{-3}} \times \left(\frac{d}{1 \,\text{kpc}}\right)^{-2} \text{cm}^{-2} \text{s}^{-1}$$

where we assume

- > all emission is hadronic in origin,
- > E_{CRmax} > \approx 200GeV, and

 $\Gamma_{\rm CR} \approx 2.5$

 ε_{CR} is the content in particles accelerated up to the observation time relative to the SN explosion energy which, under the assumption that energy losses & escape are negligible, is the hadron efficiency.

Solving for the energetics,

$$\varepsilon_{\rm CR} \times 10^{49} \,\mathrm{erg} \approx \frac{F(1 - 100 \,\mathrm{GeV})}{1.5 \times 10^{-7} \,\mathrm{cm}^2 \mathrm{s}} \left(\frac{d}{1 \,\mathrm{kpc}}\right)^2 \left(\frac{n}{1 \,\mathrm{cm}^{-3}}\right)^{-1}$$

Relating SNR flux measurements to the energy imparted to CRs: **Preliminary** d known & $n = 1 \text{ cm}^{-3}$ d & n known 1000.0 Energy Content [×10⁴⁹ erg] 100.0 Тф 10.0 1.0 **MSH17-39** Cas A RX J0852 Kes 41 0.1 Kes 1 W28 W30 W41 жö $d = 5 \text{ kpc } \& n = 1 \text{ cm}^{-3}$ 1000.0 Cosmic Ray 100.0 10.0 1.0 upper limits • Classified Extended ULs, interacting (i=2.5, 99%) Pointlike • Marginal 0.1 Galactic Longitude ULs, young (i=2.0, 99%)

Fermi-LAT has the ability to probe population-wide, the CR-relevant phase space! "Efficiency"

 $\succ \sim 10\text{-}100\%$ for all candidates

>~1000% suggests emission may also be leptonic and/or d, n estimate may be inaccurate

24

Conclusions

Conclusions

SNR Catalog systematically confronts and solves challenges faced by analyses of Galactic Plane sources:

> Uniquely addressed with: AddSrcs, aIEM, classification & mock catalog

- → GeV SNR population characteristics:
 - Candidate distribution to flux completeness of 10⁻⁸ ph cm⁻²s⁻¹ with a characteristic index of 2.5 & range (4, 1.5)
 - > Data are challenging model assumptions!
 - Index appears to soften with age: possible separation between young & interacting SNRs

≻ MW correlations:

- > TeV-GeV index shows evidence of breaks for many sources; sample limited
- > Quantifying radio-GeV correlation within constraints of incomplete, nonuniform distances

≻ Constraining CR contribution:

- > Ability to constrain known SNRs' aggregate contribution to CRs
- \succ Measured efficiencies average $\sim 10\% =>$ possible to create bulk

Measuring a statistically significant population of GeV SNRs within a MW context permits us to assess the class's ability to supply CRs observed by direct detection experiments.