

The VERITAS Dark Matter Program

Benjamin Zitzer High Energy Physics Division (HEP) Argonne National Laboratory

Fermi Symposium 2014 Nagoya, Japan – October 22nd 2014

VERITAS Introduction

- Very Energetic Radiation Imaging Telescope Array System
- Employs ~100 scientists in five countries
- Full Array Operations since fall 2007
- Four 12m Davies-Cotton Telescopes in Southern AZ
- Upgrades:
 - Move of T1 in Summer 2009
 - Trigger Upgrade in November 2011
 - Camera Upgrade in Summer 2012

- Support From: US DOE US NSF Smithsonian Inst. STFC (UK) SFI (Ireland) NSERC (Canada)
- Performance: Energy Range: 0.85 – 30 TeV (Post-Upgrade) Energy Res: ΔE/E ~ 0.2 Angular Res: ~0.1 deg (68%) Angular Accuracy: 50 arcsec FOV: 3.5 deg

Gamma Rays from Dark Matter

Dark Matter is well described theoretically by extensions of the Standard Model of Particle physics (Supersymmetry, Kaluza-Klein) by a Weakly Interacting Massive Particle (WIMP) in the mass range of ~10 GeV – 10 TeV.

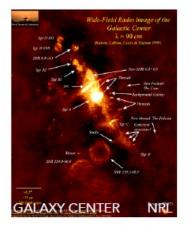
	Annihilation Channel	Secondary Processes	Signals	Notes
**	$\chi \chi \rightarrow q \bar{q}, gg$	$p, \bar{p}, \pi^{\pm}, \pi^{0}$	$p, e, \iota(\gamma)$	
1 China	$\chi \chi \rightarrow W^+W^-$	$W^{\pm} \rightarrow l^{\pm} \nu_l, W^{\pm} \rightarrow u \overline{d} \rightarrow$	p, e, u	
, , , , , , , , , , , , , , , , , , , ,		π^{\pm}, π^{0}	<u> </u>	
e show	$\chi \chi \rightarrow Z^0 Z^0$	$Z^0 \rightarrow ll, \nu \bar{\nu}, q\bar{q} \rightarrow \text{pions}$	$p, e(\gamma)$	
	$\chi \chi \rightarrow \tau^{\pm}$	$\tau^{\pm} \rightarrow \nu_{\tau} e^{\pm} \nu_{e}, \tau \rightarrow$	p, e, γ, ν	
· X		$\nu_{\tau}W^{\pm} \rightarrow p, \overline{p}, \text{pions}$		
. \	$\chi \chi \rightarrow \mu^+ \mu^-$		e 🕐	Rapid energy loss of
			-	μ s in sun before
\$. 1/				decay results in
) tří (_	sub-threshold νs
R+ +	$\chi \chi \rightarrow \gamma \gamma$	-0.	\bigcirc	Loop suppressed
	$\chi \chi \rightarrow Z^0 \gamma$	Z^0 decay	7	Loop suppressed
∕ _, \	$\chi \chi \rightarrow e^+e^-$		e (v)	Helicity suppressed
2, د	$\chi\chi \rightarrow \nu p$		ν	Helicity suppressed
				(important for
0.1				non-Majorana
				WIMPs?)
1 2	$\chi \chi \rightarrow \phi \bar{\phi}$	$\phi \rightarrow e^+e^-$	e±	New scalar field with
15		1. 1/0 1 1		$m_{\chi} < m_q$ to explain
1 e-1		internal/final state b		large electron signal
		inverse Compton	$1 \gamma' s$	and avoid
I T				overproduction of
<u>}~~~</u>				p, γ
1				
r ⁺				

(Nearly) All Roads lead to Gamma Rays!

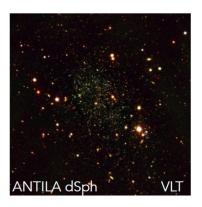
- WIMP annihilation production γ-rays
 - Gamma-ray line from direct annihilation (higher order process)

•Gamma-ray continuum from hadronization

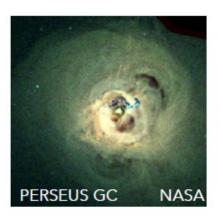
- Enhanced near $M_{_{WIMP}}$ from internal brem
- •DM gamma-ray flux:


$$\begin{aligned} \frac{dF(E,\hat{\mathbf{n}})}{dEd\Omega} &= \int d\ell \, \ell^2 \, r(\ell \hat{\mathbf{n}}) \frac{dN_{\gamma}(E)}{dE} \frac{1}{4\pi\ell^2} \\ &= \underbrace{\frac{\langle \sigma v \rangle}{8\pi M^2} \frac{dN_{\gamma}(E)}{dE}}_{\text{$\mathbf{N}} \sqrt{2}} \int d\ell \, \rho^2(\ell \hat{\mathbf{n}})} \end{aligned}$$
Particle Physics Astrophysical Factor

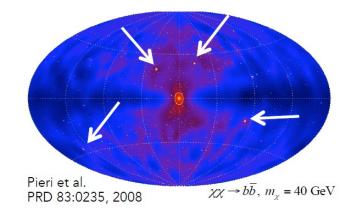
VERITAS Dark Matter Targets


Galactic Center (GC):

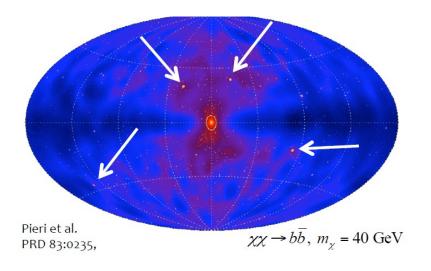
- Close by
- Astrophysical backgrounds

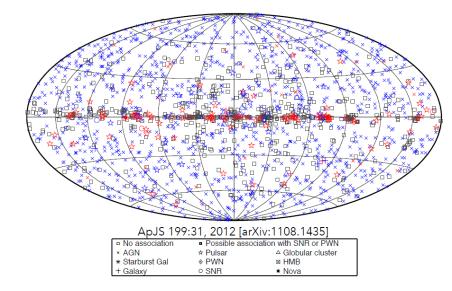

Dwarf Spherioidal Galaxies (DSphs):

- Low Astrophysical Backgrounds
- High M/L
- Low Flux

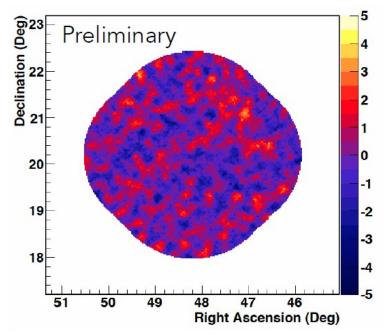

Galaxy Clusters:

- Large DM Content
- Large Distance
- Potentially Extended
- Astrophysical backgrounds


Unassociated Fermi Sources

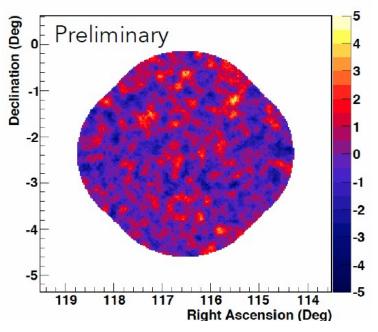

Potentially DM Sub-halos?

DM Sub-Halo Candidates



- N-Body simulations predict the existence of DM sub-halos
 - Potentially close enough for VHE detection
 - Too small to attract Baryonic matter for star formation
 - Invisible at other wavelengths
- Selection Criteria for VERITAS Observations:
 - Lies outside the Galactic Plane
 - No variability
 - No spectral curvature
 - Detection feasible by extrapolation of Fermi-LAT spectra to VHE
 - No counterparts at other wavelengths

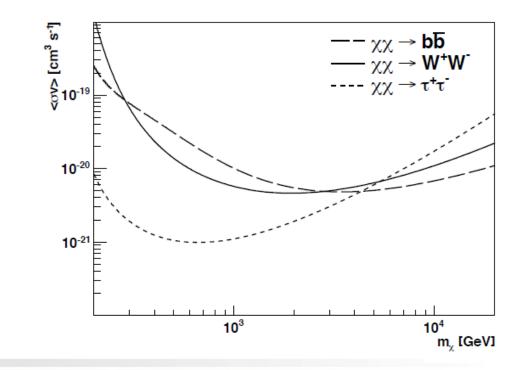
DM Sub-Halo Candidates

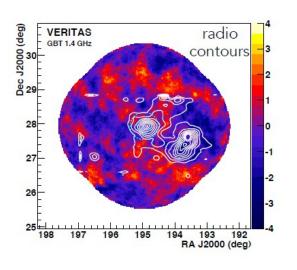


2FGL J0312.8+2013

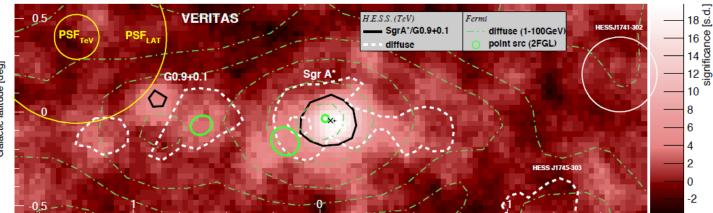
Exposure Time: 9.1 hrs Excess: -25.7 ± 16.9 Significance: -1.5σ Energy Threshold: 220 GeV Flux UL (99% CL): < 1.78×10^{-12} cm⁻²s⁻¹ < 0.9% Crab Nebula

2FGL J0746.0-0222

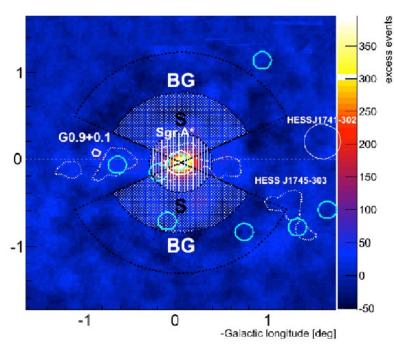

Exposure Time: 9.1 hrs Excess: -14.5 ± 15.8 Significance: -0.9σ Energy Threshold: 320 GeV Flux UL (99% CL): < $1.23 \times 10^{-12} \text{ cm}^{-2} \text{s}^{-1}$ < 1.1% Crab Nebula

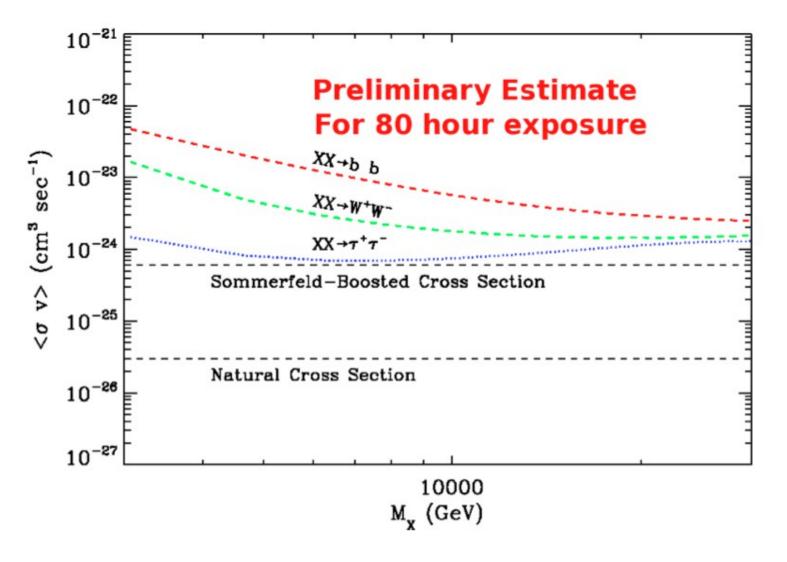

Galaxy Clusters

- 21 hrs on Coma Galaxy Cluster, low Zn observations
 - No Detection with VERITAS or Fermi-LAT
 - <σv>^{95%CL} ~ O(10⁻²¹) cm⁻³s⁻¹
 - ApJ 757 123 (2012) [arXiv:1208.0676]
- Archival Galaxy Cluster search currently underway
 - Search for clusters that have overlapped in same FOV as previous VERITAS observations
 - Cluster list from ROSAT and SDSS



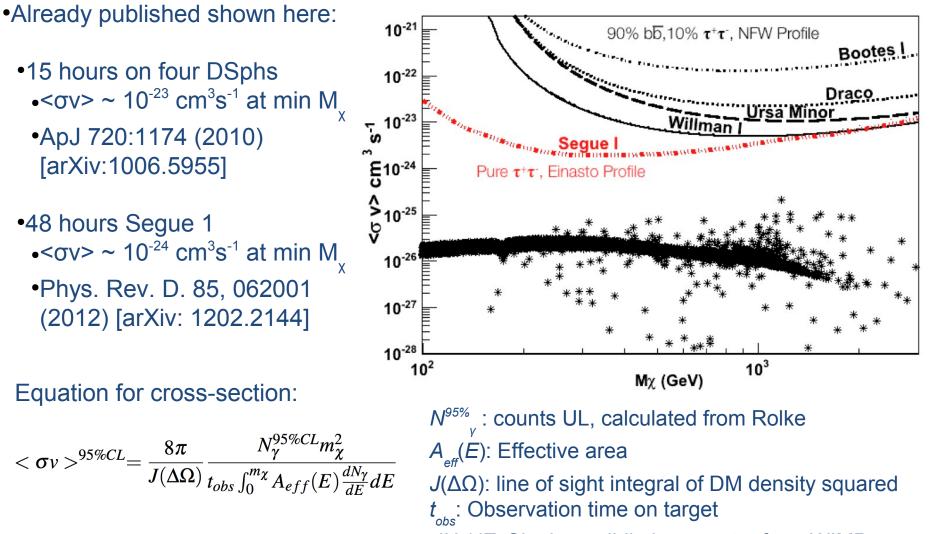
Sgr A* Observation Strategy




Galactic longitude [deg]

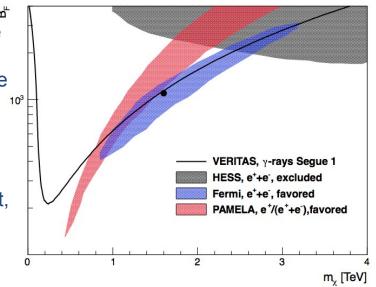
Salactic latitude [deg]

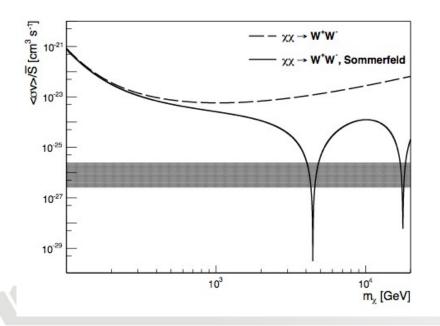
- SgrA* Observations paper: ApJ 790 149 [arXiv:1406.6383], Poster by Andy Smith
- 18σ detection of SgrA*, 46 hours observation
- Large Zenith Observations \rightarrow ~2 TeV threshold
- Increased CR density in GC, diffuse gamma-ray emission, SNR & PWNe in GC
- Two different ON/OFF pointings
 - Define signal/bg regions in ON/OFF maps, excluding SgrA* and other gamma-ray sources
 - Use OFF map to determine energy-dependent acceptance

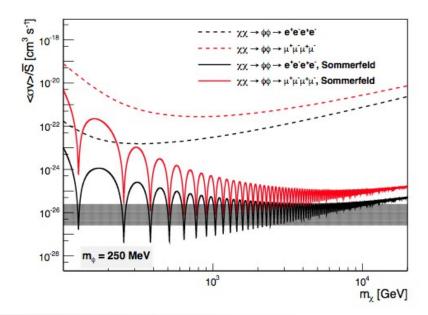


DM Constraints from the Galactic Center

DM Constraints from DSphs

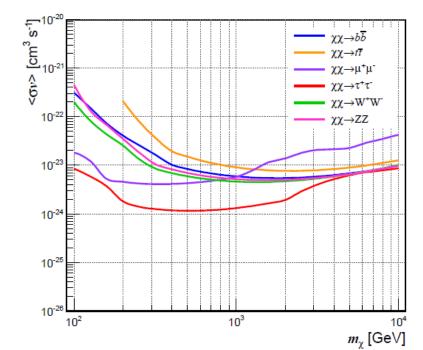


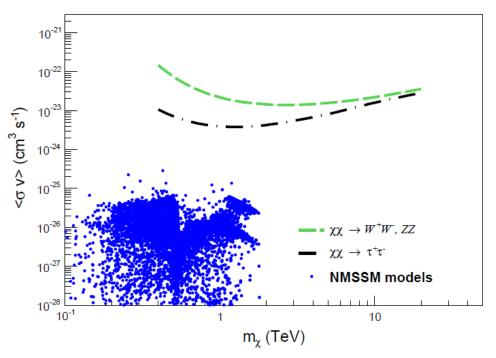



dN/dE: Single annihilation spectra for a WIMP

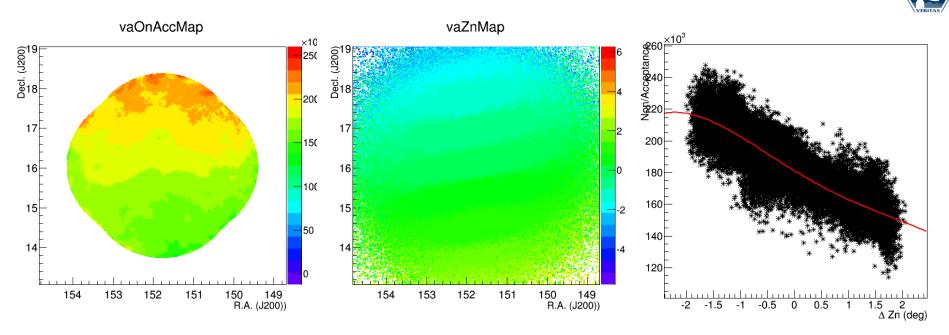
Segue 1 Results

- CR electron excess seen by Pamela/Fermi/HESS could be explained by a Sommerfeld enhancement
 - Arises when two DM particles interact though a attractive potential, mediated by a third particle.
- Velocity dependent, modifying cross-section
- Constraints on models of Lattanzi & Silk (2009), bottom left, and Arkani-Hamed et al (2009), bottom right



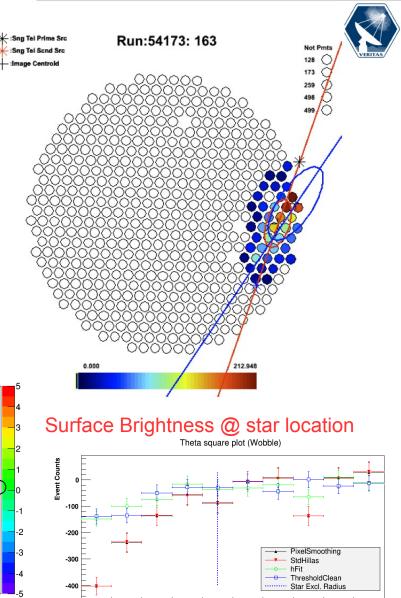


DSph Results of other IACTs



MAGIC: 160 hours on Segue 1 Full Maximum Likelihood method ArXiv: 1312.1535

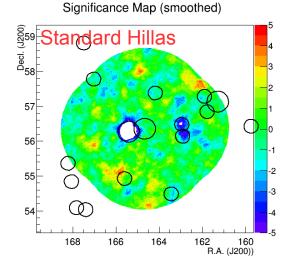
HESS: 141 hours combined on five dSphs 90 hours on Sagittarius Maximum Likelihood Method Deep exposure on Galactic Center as well arXiv: 1410.2589

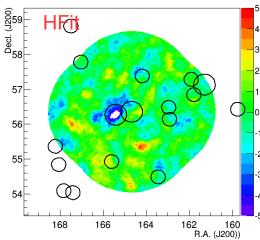

Deep Exposure Systematics

- 92 hours of data quality selection for Segue 1 from period of 2009 to 2013
 - Deepest VERITAS Observation without seeing a strong gamma-ray signal
- Softer cuts used, improves statistics, but increases systematics
 - Wider significance distributions of backgrounds (Gaussian sigma > 1.0)
- Gradient correlating with Zenith angle of observations (above, right)
 - Fit of Non/Acc (Flatness) Zenith curve used to re-weight acceptance

Deep Exposure Systematics (cont.)

- Bright stars are problematic for IACT data
- Suppressed pixels in cameras for analysis
 - Holes in skymaps
- Segue 1 has bright star (Eta Leonis, 3.8 BMag)
 - located 0.68 deg away
- New HFit algorithm 2D Gaussian fit of all pixels in camera, no cleaning
- Tested on independent data set RBG J1058

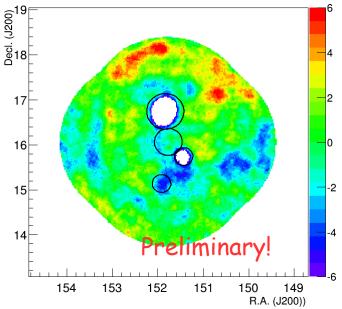



0.04

0.06

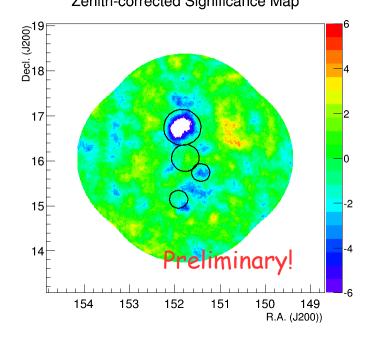
0.08

0.1



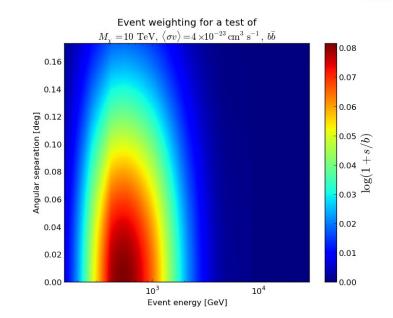
Significance Map (smoothed)

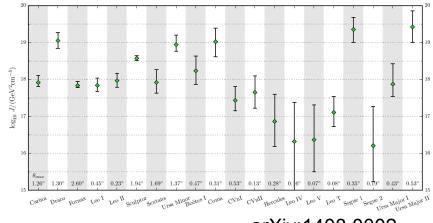
DSph Results Before/After


Before Systematics Corrections Significance Map (smoothed)

Dsph Results after Systematic corrections:

DSph		Exposure (hrs)	Log ₁₀ J (GeV ² cm ⁻⁵)	Significance (σ)	Eth (GeV)	Flux UL, 95% CL (> 300 GeV), Index = -2.4
Segue	e 1	91.9	19.0	0.7	150	4.2x10 ⁻⁹ cm ⁻² s ⁻¹ , ~0.3% CU
Ursa I	Minor	59.7	18.9	-0.1	290	3.4x10 ⁻⁹ cm ⁻² s ⁻¹ , ~0.2% CU
Draco		49.9	18.4	-1.0	220	3.4x10 ⁻⁹ cm ⁻² s ⁻¹ , ~0.2% CU
Boöte	s 1	14.3	17.9	-1.0	170	5.0x10 ⁻⁹ cm ⁻² s ⁻¹ , ~0.3% CU
Wilma	an 1	13.7	18.9	-0.6	180	1.1x10 ⁻⁸ cm ⁻² s ⁻¹ , ~0.7% CU


After Systematics Corrections Zenith-corrected Significance Map



Future Work: Combined DM Analysis

- •VERITAS DM results shown previously do not use individual photon information, one limit per source
- •Event Weighting method used for Fermi-LAT data of DSphs (Geringer-Sameth et al. arXiv:1410.2242)
 - Authors working with VERITAS Collaboration
 - •Each event is assigned a weight as a function of energy and position, increased sensitivity
 - •Events closer to target with lower energy more likely to be from DM annihilation
 - •Sum of weights is test statistic to test hypothesis of events existing due to DM annihilation with given M and $\langle \sigma v \rangle$
 - •Able to combine multiple sources and instruments into a single DM limit
 - •Very close to having new DM physics results ready (~1 month)
 - •J factors to be used from Geringer-Sameth et al. [arXiv:1408.0002]

arXiv:1408.0002

Concluding Remarks

VERITAS dark matter program is ongoing:

- Observations of dSphs, GC, Fermi UNIDs, galaxy clusters
- No detections of DM (yet!)
- Gaining better understanding of systematics, utilizing new techniques
- Segue 1 Flux UL reduced with longer exposure: ~0.5% Crab \rightarrow ~0.3% Crab

Future Plans:

- Continuing observations of dark matter targets
- Significant portion of VERITAS observing time (~170 hrs/year)
- Analysis of dSphs for combined analysis paper ongoing (~230 hours!)
 - Gamma-ray analysis/Flux UL complete
 - Dark Matter physics limits soon, including line search
- Galactic center
 - SgrA* detection paper complete
 - Work on DM limits of halo ongoing
- Fermi UNIDs
 - More data to be taken, search for more feasible Fermi UNIDs
- Galaxy Clusters
 - Archival work underway, work on extended source systematics