Rapid TeV and GeV Variability in AGNs as Result of Jet-Star Interaction

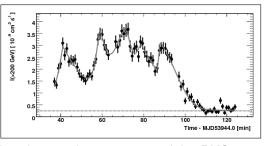
Maxim V. Barkov¹

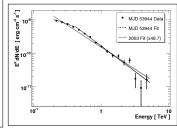
¹ABBL RIKEN, Wako, Japan

Nagoya University 23 October 2014

My collaborators

Felix A. Aharonian Sergey V. Bogovalov Valentí Bosch-Ramon Anton V. Dorodnitsyn Stanislav R. Kelner Dmitriy V. Khangulyan Manel Perucho

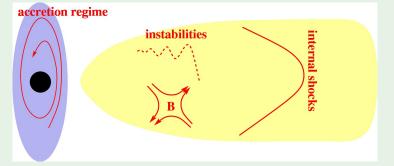



Outline

- VHE short variability and MAIN Ingredients (Jet&Star)
- 2 A low power jet (M87)
- A powerful jet and heavy cloud (3C454.3)
- 4 Conclusions

PKS 2155–304 observations

The observed parameters of the PKS 2155-304 flares (H.E.S.S. data)


$$L_{\gamma} pprox 10^{47} erg \ s^{-1}$$
 $au pprox 200 \ s$ $L_{X} \sim 10^{46} erg \ s^{-1}$

(Aharonian et al 2007)

What are the Blobs in Powerful Jets?

There are a lot of hypothetical blobs

Internal Shocks, Magnetic Reconnection, Change in Accretion, Instabilities....

Fundamental Requirements on the blob properties

BLOBS MUST BE SMALL AND CONTAIN A LOT OF ENERGY (OR BE ABLE TO TRIGGER POWERFUL INTERACTION)

instabilities

can be very small

no energy

accretion

hydrodynamical scale

a lot of energy

shocks

very intensive interaction at hydrodynamical scale

reconnection

a lot of energy

hydrodynamical scale

Blobs of external origin

- If blobs have external origin, they can be very small as compared to the hydrodynamical scale of the jet....
- External blobs contain no energy (as compared to the jet)
- I.e. external blobs must be able to trigger an intensive interaction. To be heavy?
- Compact and heavy, i.e DENSE: stars, BLR clouds?

Specific realization of such blob formation:

Jet-Red Giant Interaction Scenario

Main Ingredients

AGN jet

- Relativistic outflow ($\Gamma_{bulk} \sim 10-100$, likely depends on the distance)
- Narrow: typically one adopts $\theta \simeq \Gamma^{-1}$, i.e.,
- Cross section:

$$\omega \simeq 10^{17} \Gamma_{1.5}^{-1} R_{pc} cm$$

Stars around BH

Moves with Keplerian velocity:

$$V_* \simeq 600 \textit{M}_{BH}^{1/2} \textit{R}_{pc}^{-1/2} \text{km/s}$$

• Density (quite uncertain): $\rho_* \simeq \rho_0 R^{-a}$

Mass injection between 10^{-2} and 10^{-1} pc:

$$\dot{M}_* \simeq 2 \times 10^{-5} \frac{\rho_0 M_{\text{BH,8}}^{1/2}}{\Gamma_{1.5}} \int\limits_{0.01}^{0.1} x^{1/2-a} dx \; [\text{pc}^3 \, \text{yr}^{-1}] \, ,$$

Probability to get a star to a jet

Murphy et al. 1991

- it was revealed that "a" spans a quite broad range depending on the mass accumulated in the central parsec
- It was obtained that a=7/2 for $\bar{\rho}=10^6M_{\odot}{\rm pc}^{-3}$ and a=1/2 for $\bar{\rho}=10^8M_{\odot}{\rm pc}^{-3}$

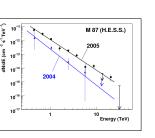
Mass injection appears to depend very weakly on a

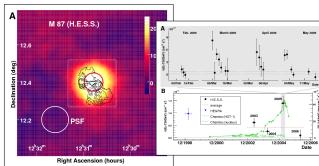
$$\dot{M}_* \simeq 2 \times 10^2 M_{\rm BH,8}^{1/2} M_{\odot} \Gamma_{1.5}^{-1} \, \rm yr^{-1}$$

for
$$10^{-2} < R_{pc} < 0.1$$

One can expect HUNDREDS of stars entering per year which can contain a few Red Giants or young stars per year...

VHE variability in M87

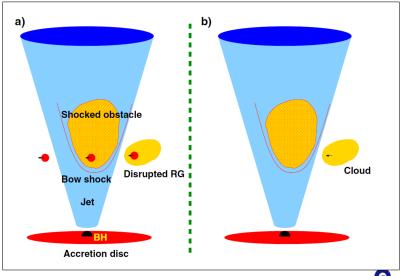

H.E.S.S., MAGIC, VERITAS observations of M87


Several flashes were observed in 2006, 2008, 2010.

Variability on scales $t \sim 1$ day

The flux $L_{\gamma} \sim 10^{42} {\rm ergs~s^{-1}}$

 $E_{\gamma,max} \simeq 20$ TeV.

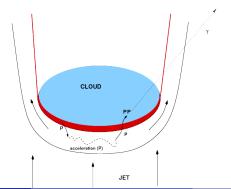


(Aharonian et al 2006; Abramowski et al. 2011; Aliu et al. 2011)

Cloud/Star — Jet interaction

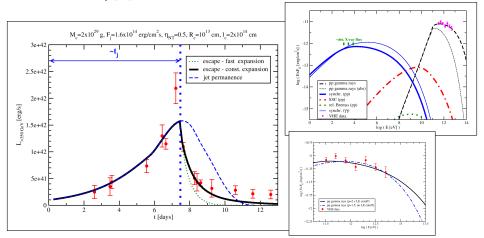
(Barkov et al 2010, 2012b)

Star envelope evolution (Numerical results)


Uniform cloud

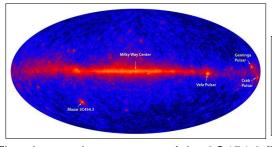
p-p interaction

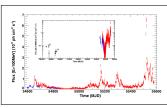
The cloud density can be very high making the *pp* interactions to be the most plausible mechanism for the gamma-ray production in the RG-jet interaction scenario: in this case the characteristic cooling time for *pp* collisions is


$$t_{pp} \approx \frac{10^{15}}{c_f n_c} = 10^5 \, n_{c,10}^{-1} c_f^{-1} \, \text{s}$$
 $\chi \equiv E_\gamma / E_\rho = 0.17 \, [2 - \exp(-t_V / t_{pp})]$

VHE light curves and spectra (Numerical model)

$$\xi=0.5$$
 and $Q_{\rm p}(E)\propto E^{-2}$

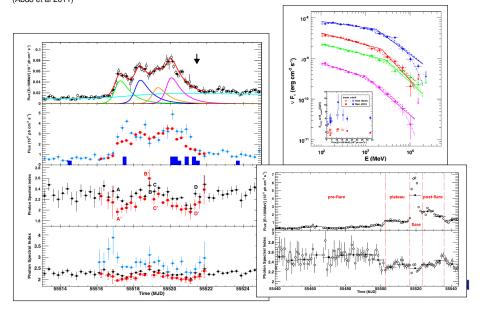

(Barkov et al 2012b)



Fast variability in GeV blazars (3C454.3)

3C454.3 observations

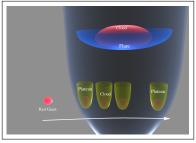
The observed parameters of the 3C454.3 flares (Fermi data)


$$L_{\gamma} pprox 2 imes 10^{50} erg s^{-1}$$

$$au_{r} pprox 4.5 \ h$$

$$L_{X} \sim 5 imes 10^{47} erg \ s^{-1}$$

(Abdo et al. 2011; Vercellone et al. 2011)



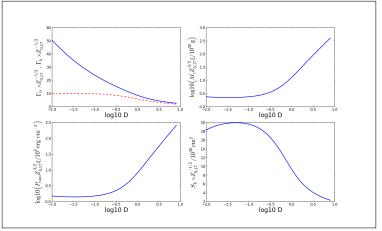
3C454.3 observations (2010 November)

(Abdo et al 2011)

Sketch and Plateau model

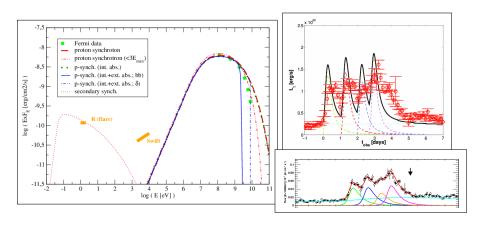
$$\dot{M}_* \approx 10^{24} L_{\gamma,49} \xi_{-1}^{-1} \Gamma_{j,1.5}^{-3}$$
 g/s.

The cosmic ray/X-ray excite stellar wind (Basko et al. 1973; Dorodnitsyn et al. 2008),

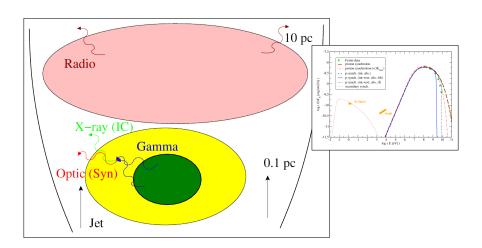

$$\dot{M} \approx 10^{24} \alpha_{-12} R_{*.2}^{5/2} M_{*.0}^{-1/2} \chi P_{0,6} \, \mathrm{g \ s^{-1}}$$

which providing limitations on the stellar radius

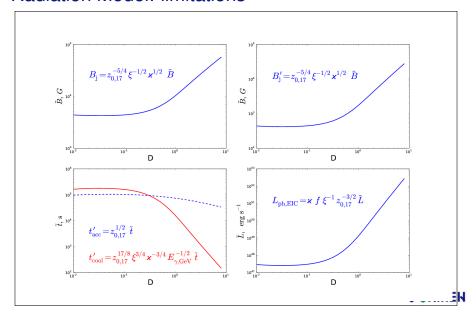
$$R_{*,2} \gtrsim \left(rac{2ar{F}_{
m e} M_{0,*}^{1/2}}{lpha_{-12} \chi}
ight)^{2/5}.$$


The Model Solution for the Main Flare

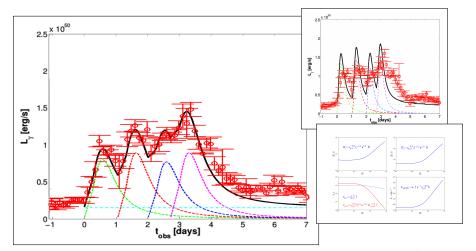
$$\begin{split} D \equiv \frac{\textit{L}_{j}\textit{r}_{c}^{2}}{4\theta^{2}\Gamma_{j}^{3}\textit{Z}_{0}\textit{c}^{3}\textit{M}_{c}} & \textit{L}_{j} \geq 10^{48} \quad \text{erg s}^{-1} \\ \textit{M}_{BH} \approx 10^{9}\textit{M}_{\odot} & \delta_{b} \approx 20 \end{split}$$


Radiation Model: Proton synchrotron + secondary synchrotron

 $t_{\rm acc}/(2\Gamma_b^2)\approx 5$ h.



Radiation Model: Geometry



Radiation Model: limitations

Radiation Model: Light curve + cooling time

Conclusions

- The jet can blow-up some RG envelope fragments and accelerate them up to Lorentz factors of Γ_i ($\sim 10-30$).
- In the case of 3C454.3 the radiation in the GeV energy range can be effectively produced through proton synchrotron radiation, Jitter or EIC in the Thompson regime.
- The model can explain hour sacle GeV flares and the minute-scale TeV flares on top of a longer (typical time-scales of days) gamma-ray variability.
- The process can render suitable conditions for energy dissipation and proton acceleration, which could explain the detected day-scale TeV flares in 2010 from M87 via proton-proton collisions.

Based on:

- MVB, F.A. Aharonian and V. Bosch-Ramon, (M87); ApJ (2010) 724, 1517
- MVB, F.A. Aharonian, S.V. Bogovalov, S.R. Kelner and D.V. Khangulyan, (PKS 2155–304); ApJ (2012) 749, 119
- V. Bosch-Ramon, M. Perucho and MVB, (M87); A&A (2012) 539, 69
- MVB, V. Bosch-Ramon and F.A. Aharonian, (M87); ApJ (2012) 755, 170
- D.V. Khangulyan, MVB, V. Bosch-Ramon, F.A. Aharonian and A. Dorodnitsyn, (3C454.3) ApJ (2013) 774, 113

Thank you!!!

