

Sylvain Guiriec (NASA GSFC/UMD/CRESST)

on behalf of

C. Kouveliotou, F. Daigne, B. Zhang, R. Hascoet, R. Mochkovitch, M. Gonzalez, R. Reyes, F. Ryde, R. Nemmen, J. Racusin, J. McEnery, N. Gehrels,

5th Fermi Symposium - Nagoya, Japan – October 23rd, 2014

The Band Function

• Band function usually associated to synchrotron emission from e- accelerated within the jet.

Line of Death

- Band function usually associated to synchrotron emission from e- accelerated within the jet.
- However, values of α are often incompatible with synchrotron emission predictions.

(See M. Burgess' talk "synchrotron or not to Synchrotron")

Band + Power Law

Band + Power Law

The Fireball Model

The Fireball Model

5/17

• The genuine fireball model predict a strong photospheric emission overpowering the nonthermal one.

- The genuine fireball model predict a strong photospheric emission overpowering the nonthermal one.
- Only a subdominant thermal-like emission component compared to the non-thermal one is observed (1st time reported in Guiriec et al. 2011)

The outflow must be highly magnetized close to the source and magnetization must be low at large radii in order make possible internal shock mechanisms.

Black Body + Band

Black Body + Band

GRB 120323A

With BB, the Band function is more compatible with synchrotron emission scenarios !

Spectral Shapes

Black Body + Band + PL with/without cutoff

(Ackermann et al. 2011, ApJ 725, 225)

Black Body + Band + PL with/without cutoff

Sylvain Guiriec – 5th Fermi Symposium, Nagoya, Jap

11/17

vain Guiriec – 5th Fermi Symposium, Nagova, Japai

GRB 080916C

Observed Count Light Curves

GRB 080916C

Observed Count Light Curves

Reconstructed Photon Light Curves

GRB 080916C

Observed Count Light Curves

Reconstructed Photon Light Curves

vlvain Guiriec – 5th Fermi Symposium, Nagova, Japa

```
13/1
```


(Guiriec et al., in Preparation)

Sylvain Guiriec – 5th Fermi Symposium, Nagoya, Japai

(Guiriec et al., in Preparation)

Conclusion

ylvain Guiriec – 5th Fermi Symposium, Nagoya, Japan

Conclusion

• Empirical Band function alone not always well represent the physics behind prompt emission spectra AND it may even prevent to understand it.

• Combination of a thermal-like component with a Band function makes the Band function shape more compatible with synchrotron scenarios.

• An additional non-thermal power law extending from few keV up to hundred MeV is sometimes present in the spectra => challenging for interpretation.

• Band and BB components most intense at early time, the additional power law flux peaks at later time and lasts much longer.

Band+BB+PL = 5 free parameters + 1 constraint (Ep-F) while Band = 4 free parameters
~same number of degrees of freedom !!!

• Band+BB+PL model also consistent with data of other instruments.

• New Ep-F and Ep-L relations.

Backup Slides