

Varying faces of photospheric emission in gamma-ray bursts

Magnus Axelsson Stockholm University and OKC

On behalf of the Fermi GBM and LAT teams

5th *Fermi* Symposium, Nagoya, Japan (Oct 20-24, 2014)

Basic framework: the fireball model

ANATOMY OF A BURST

When a black hole forms from a collapsed stellar core, it generates an explosive flash called a γ -ray burst. Contrary to earlier thinking, evidence now suggests that the glowing fireball produces more γ -rays than do the shock waves from the blast.

Thermal radiation

Black hole

Sermi

1 FIREBALL IS OPAQUE Electron-photon interactions prevent light from escaping. 2 FIREBALL IS TRANSPARENT Thermal radiation includes γ-rays emitted by hightemperature plasma. 3 SHOCK WAVES ACCELERATE ELECTRONS γ-rays are emitted by accelerated electrons and boosted to high energies through scattering.

Synchrotron

radiation

4 ELECTRONS HIT INTERSTELLAR MEDIUM

γ-ray

They rapidly decelerate, emitting optical light and X-rays.

Afterglow

X-ray

FIG. 1.—Solid line: energy distribution of the flux received by a distant observer at rest with respect to the center of mass of the fluid. The vertical scale is in arbitrary units. (Dashed line): corresponding distribution for a blackbody at the initial temperature of the fluid.

Paczyński 1986, ApJL, 308, 47

Single Planck function bursts Compton Gamma-Ray Observatory GRB930214

sermi

Gamma-ray

Space Telescope

Ryde (2004): Blackbody throughout the pulse
Ghirlanda et al. (2003): Blackbody in initial phase of burst

Single Planck function bursts Compton Gamma-Ray Observatory GRB930214

Spectra from temporally resolved pulses observed by BATSE over the energy range 20-2000 keV.

Gamma-ray

Space Telescope

CGRO BATSE: 6 observed bursts out of 2200

Ryde (2004): Blackbody throughout the pulse
Ghirlanda et al. (2003): Blackbody in initial phase of burst

Narrow "BB-like" components

Narrow "BB-like" components

Energy [keV]

Ryde et al. 2011

What do these bursts tell us?

1. Jet photosphere is detected! Photosphere has an effect on the formation of the GRB spectra.

2. Some spectra are pure blackbodies \rightarrow strong theoretical implications!

3. Some spectra are slightly broader than a BB \rightarrow broadening mechanisms

4. Typical spectra are not this kind

5. Motivation to search for blackbodies in the spectra

Examples of multi-peaked spectra observed by *Fermi*:

The photospheric component is modelled by a Planck function. Is expected to be broadened to some extent.

<u>Two component spectra</u>: Blackbody component typically 5-10% of total flux. But much higher some cases.

Two component spectra

 F_{m} (photons keV cm⁻² s⁻¹)

GRB120323A

Changes the interpretations!

Change in Epeak
Change in alpha (synchrotron?)
Change in emission zones

Guiriec et al. 2013

Interpretation 1: Multiple Emission Zones

Thermal

radiation

ANATOMY OF A BURST

When a black hole forms from a collapsed stellar core, it generates an explosive flash called a y-ray burst. Contrary to earlier thinking, evidence now suggests that the glowing fireball produces more y-rays than do the shock waves from the blast.

Black hole

FIREBALL IS OPAQUE Electron-photon interactions prevent light from escaping.

2 FIREBALL IS TRANSPARENT Thermal radiation includes y-rays emitted by hightemperature plasma. 3 SHOCK WAVES ACCELERATE ELECTRONS y-rays are emitted by accelerated electrons and boosted to high energies through scattering.

Synchrotron

radiation

4 ELECTRONS HIT INTERSTELLAR MEDIUM They rapidly decelerate, emitting optical light and X-rays.

γ-ray

Afterglow

(-rav

2 zone emission, various realisations

If below the saturation radius - strong black body If above saturation radius - adiabatic cooling $\left(\frac{r_{\rm ph}}{r_{\rm s}}\right)^{-2/3} = \frac{F_{\rm BB}}{F_{\rm NT}},$

Magnetisation of the jet allows the ratio to vary (Daigne et al. 2013)

GRB110920 Two component fit

Synchrotron + BB

McGlynn et al. 2012

Not a general solution! Talk and poster by Michael Burgess

ore y-rays than do the shock waves

Interpretation 2: Photospheric emission

Thermal radiation

Synchrotro

radiation

Modification of Planck spectrum

Heating mechanism below the photosphere modifies the Planck spectrum

- Internal shocks (Peer, Meszaros, Rees 06, Ryde+10, Toma+10, Ioka10)
- Magnetic reconnection (Giannions 06, 08)
- Weak / oblique shocks

(Lazzati, Morsonoi & Begelman 11, Ryde & Peer 11)

Collisional dissipation

(Beloborodov 10, Vurm, Beloborodov & Poutanen 11)

Emission from the photosphere is NOT seen as Planck !

Modeling with subphotospheric dissipation

- Our code (by Pe'er & Waxman 2004) solves the kinetic equations for internal shocks
- Includes cyclo/synchrotron emission, SSA, Compton scattering (direct/inverse), pair production, pair annihilation

Modeling with subphotospheric dissipation

- Our code (by Pe'er & Waxman 2004) solves the kinetic equations for internal shocks
- Includes cyclo/synchrotron emission, SSA, Compton scattering (direct/inverse), pair production, pair annihilation

Modification of Planck spectrum

Geometrical broadening: 'photosphere' is NOT a single radius, but is 3-dimensional

'Limb darkening' in relativistically expanding plasma: emission from photosphere is NOT seen as Planck!

Modification of Planck spectrum

Geometrical broadening: 'photosphere' is NOT a single radius, but is 3-dimensional

'Limb darkening' in relativistically expanding plasma: emission from photosphere is NOT seen as Planck!

Possible observable to discriminate between interpretations: *Polarisation*

Polarisation from the photosphere

- Polarized emission in range 0-40% expected (depending on viewing angle and jet structure)
- Only a change in pol. angle of 90° is possible (due to jet axisymmetry)
- If jet is wide, most obs. see low polarization (few percent)
- Correlations expected between spectrum and polarization

Lundman, Pe'er, & Ryde 2014

Conclusions

The jet photosphere is important for the understanding of GRB emission.

Most GRB spectra do not look thermal (i.e., Planckian).

Many GRBs have multiple components.

Interpretations: 1. Multi zone emission 2. Pure photospheric emission

Polarisation measurements are important!