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Cosmic Gamma-ray Background

• Numerous sources are buried in the cosmic gamma-
ray background (CGB).

Fermi 
3-year survey >100 MeV
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Figure 1: “Differential” sensitivity (integral sensitivity in small energy bins) for a minimum
significance of 5σ in each bin, minimum 10 events per bin and 4 bins per decade in energy.
For Fermi-LAT, the curve labeled “inner Galaxy” corresponds to the background estimated
at a position of l = 10◦, b = 0◦, while the curve labeled “extragalactic” is calculated using
the isotropic extragalactic diffuse emission only. For the ground-based instruments a
5% systematic error on the background estimate has been assumed. All curves have been
derived using the sensitivity model described in section 2. For the Fermi-LAT, the pass6v3
instrument response function curves have been used. As comparison, the synchrotron and
Inverse Compton measurements for the brightest persistent TeV source, the Crab Nebula
are shown as dashed grey curves.

but we do not expect the results described here to change in any significant
way. The exact details of the sensitivity for CTA in general depend on the
as of yet unknown parameters like the array layout and analysis technique of
CTA. However, we don’t expect the sensitivity of CTA or the lifetime of the
Fermi-LAT to change by a significant factor compared to what is assumed
here (unless there is a significant increase in the number of telescopes for
CTA). As the differential sensitivity curves for these instruments are usually
only provided for 1-year of Fermi-LAT and for 50 hours of H.E.S.S./CTA,
we had to make use of a sensitivity model which will be described in sec-
tion 2. Generally, the sensitivity information provided is insufficient to make
a detailed comparison of the performance in the overlapping region which

3

Cosmic Gamma-ray Background Spectrum at >0.1 GeV

• Softening around ~250 GeV. 

• Fermi resolves CGB more at higher 
energies. 

• See Ackermann’s talk

• Updated LAT measurement of IGRB spectrum 
– Extended energy range: 200 MeV – 100 GeV x 100 MeV – 820 GeV 

• Significant high-energy cutoff feature in IGRB spectrum 
– Consistent with simple source populations attenuated by EBL 

• Roughly half of total EGB intensity above 100 GeV now 
resolved into individual LAT sources 
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Funk & Hinton ‘13

CGB Spectrum
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Possible Origins of CGB at GeV

Markus Ackermann  |  220th AAS meeting, Anchorage  |  06/11/2012  |  Page  

The origin of the EGB in the LAT energy range.
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Unresolved sources Diffuse processes
Blazars

Dominant class of LAT extra-
galactic sources. Many estima-
tes in literature.  EGB contribu-
tion ranging from 20% - 100% 

Non-blazar active galaxies
27 sources resolved in 2FGL 
~ 25% contribution of radio 
galaxies to EGB expected. 
(Inoue 2011)

Star-forming galaxies
Several galaxies outside the 
local group resolved by LAT. 
Significant contribution to EGB 
expected. (e.g. Pavlidou & Fields, 
2002)

GRBs
High-latitude pulsars

small contributions expected. 
(e.g. Dermer 2007, Siegal-Gaskins et al. 

2010) 

Intergalactic shocks
widely varying predictions of 
EGB contribution ranging from 
1% to 100% (e.g. Loeb & Waxman 
2000, Gabici & Blasi 2003)

Dark matter annihilation
Potential signal dependent on 
nature of DM, cross-section and 
structure of DM distribution 
(e.g. Ullio et al. 2002)

Interactions of UHE cosmic 
rays with the EBL

dependent on evolution of CR 
sources, predictions varying from 
1% to 100 % (e.g. Kalashev et al. 2009)

Extremely large galactic 
electron halo (Keshet et al. 2004)
  

CR interaction in small solar 
system bodys (Moskalenko & Porter 
2009)

© M. Ackermann



Typical Spectra of Blazars
• Non-thermal emission 

from radio to gamma-ray 

• Two peaks 

• Synchrotron 

• Inverse Compton 

• Luminous blazars (Flat 
Spectrum Radio Quasars: 
FSRQs) tend to have lower 
peak energies (Fossati+’98, Kubo
+’98)
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Cosmological Evolution of Blazars

• FSRQs, LBLs, & IBLs show positive evolution. 

• HBLs show negative evolution unlike other AGNs.

The Astrophysical Journal, 780:73 (24pp), 2014 January 1 Ajello et al.
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Figure 3. Observed redshift (upper left), luminosity (upper right), photon index (lower left), and source count (lower right) distributions of LAT BL Lac objects. The
continuous solid line is the best-fit LDDE model convolved with the selection effects of Fermi. The error bars reflect the statistical uncertainty including (for the
upper plots) the uncertainty in the sources’ redshifts. Error bars consistent with zero represent 1σ upper limits for the case of observing zero events in a given bin (see
Gehrels 1986).

respect to the PLE and PDE models. The fit with τ = 0 (all
luminosity classes evolve in the same way) already provides a
representation of the data, which is as good as the best-fit PLE
model (see Table 3). If we allow τ to vary, the fit improves
further with respect to the baseline LDDE1 model (TS = 30,
i.e., ∼5.5σ ). Figure 3 shows how the LDDE3 model reproduces
the observed distributions.

The improvement of the LDDE2 model with respect to the
PLE3 model can be quantified using the Akaike information
criterion (AIC; Akaike 1974; Wall & Jenkins 2012). For each
model, one can define the quantity AICi = 2npar − 2 ln L,
where npar is the number of free parameters and −2 ln L is
twice the log-likelihood value as reported in Tables 2 and 3. The
relative likelihood of a model with respect to another model can
be evaluated as p = e0.5(AICmin−AICi ), where AICmin comes from
the model providing the minimal AIC value. According to this
test, the PLE3 model has a relative likelihood with respect to
the LDDE2 model of ∼0.0024. Thus, the model LDDE2 whose
parameters are reported in Table 3 fits the Fermi data better
(∼3σ ) than the PLE3 model.

In this representation, low-luminosity (Lγ = 1044 erg s−1)
sources are found to evolve negatively (p1 = −7.6). On
the other hand, high-luminosity (Lγ = 1047 erg s−1) sources
are found to evolve positively (p1 = 7.1). Both evolutionary
trends are also correctly represented in the best-fit PLE model
(PLE3 in Table 2), but the LDDE model provides a slightly
better representation of the data. The different evolution of
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Figure 4. Growth and evolution of BL Lac objects, separated by luminosity
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uncertainty. All but the least luminous class have a redshift peak near z ≈ 1.5;
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(A color version of this figure is available in the online journal.)

low-luminosity and high-luminosity sources can be readily
appreciated in Figure 4, which shows the space density of
different luminosity classes of BL Lac objects as a function
of redshift. This figure was created by taking into account the

8

The Astrophysical Journal, 751:108 (20pp), 2012 June 1 Ajello et al.
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FSRQs BL Lacs

Ajello+’12 Ajello+’14



Blazar contribution to CGB

• Padovani+’93; Stecker+’93; Salamon & Stecker ‘94; Chiang + ‘95; Stecker & Salamon ‘96; Chiang & Mukherjee ‘98; Mukherjee & 
Chiang ‘99; Muecke & Pohl ‘00; Narumoto & Totani ‘06; Giommi +’06; Dermer ‘07; Pavlidou & Venters ‘08; Kneiske & Mannheim 
‘08; Bhattacharya +’09; YI & Totani ‘09; Abdo+’10; Stecker & Venters ‘10; Cavadini+’11, Abazajian+’11, Zeng+’12, Ajello+’12, 
Broderick+’12, Singal+’12, Harding & Abazajian ’12, Di Mauro+’14, Ajello+’14,Singal+’14 

• Blazars explain ~50% of CGB at 0.1-100 GeV.

Results 

•  EGB total intensity of 1.1×10-5 ph cm-2 s-1 sr-1 
•  Blazars contribute a grand-total of  (5-7)×10-6 ph cm-2 s-1 sr-1 

–  Resolved sources : ~4×10-6 ph cm-2 s-1 sr-1 
–  Unresolved blazars: ~(2-3)×10-6 ph cm-2 s-1 sr-1 (in agreement with Abdo+10) 

Preliminary 

Ajello at HEM14



Radio Galaxies

• Strong+’75, Padovani+’93; YI ’11; Di Mauro+’13; Zhou & Wang ’13 

• Use gamma-ray and radio-luminosity correlation. 

• ~20% of CGB at 0.1-100 GeV. 

• But, only ~10 sources are detected by Fermi.

The Astrophysical Journal, 733:66 (9pp), 2011 May 20 Inoue
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Figure 3. EGRB spectrum from gamma-ray-loud radio galaxies in the unit of MeV2 cm−2 s−1 MeV−1 sr−1. Dashed, dotted, dot-dashed, and solid curves show the
intrinsic spectrum (no absorption), and the absorbed, cascade, and total (absorbed+cascade) EGRB spectrum, respectively. The observed data of HEAO-1 (Gruber
et al. 1999), Swift-BAT (Ajello et al. 2008), SMM (Watanabe et al. 1997), COMPTEL (Kappadath et al. 1996), and Fermi-LAT (Abdo et al. 2010e) are also shown by
the symbols indicated in the figure.
(A color version of this figure is available in the online journal.)

jets (Urry & Padovani 1995). The fraction of radio galaxies
with viewing angle <θ is given as κ = (1 − cos θ ). In this
study, the fraction of gamma-ray-loud radio galaxies is derived
as κ = 0.081, as discussed in Section 3.3. Then, the expected
θ is !24◦. The viewing angle of NGC 1275, M 87, and Cen
A is derived as 25◦, 10◦, and 30◦ by SED fitting (Abdo et al.
2009b, 2009c, 2010c), respectively. Therefore, our estimation
is consistent with the observed results.

Here, beaming factor δ is defined as Γ−1(1−β cos θ )−1, where
Γ is the bulk Lorentz factor of the jet and β =

√
1 − 1/Γ2.

If Γ ∼ 10, which is typical for blazars, δ becomes ∼1 with
θ = 24◦. This value means no significant beaming effect
because the observed luminosity is δ4 times brighter than that in
the jet rest frame. On the other hand, if 2 ! Γ ! 4, δ becomes
greater than 2 with θ = 24◦ (i.e., the beaming effect becomes
important). Ghisellini et al. (2005) proposed the spine and layer
jet emission model, in which the jet is composed of a slow jet
layer and a fast jet spine. The difference of Γ between blazars
and gamma-ray-loud radio galaxies would be interpreted using
a structured jet emission model.

We note that κ depends on αr , as in Section 3.2. By changing
αr by 0.1 (i.e., to 0.7 or 0.9), κ and θ change by a factor of 1.4 and
1.2, respectively. Thus, even if we change αr , the beaming effect
is not effective if Γ ∼ 10 but with a lower Γ value, 2 ! Γ ! 4.

5.2. Uncertainty in the Spectral Modeling

As pointed out in Section 2, there are uncertainties in SED
modeling because of small samples, such as the photon index (Γ)
and the break photon energy (ϵbr). In the case of blazars, Stecker
& Salamon (1996) and Pavlidou & Venters (2008) calculated
the blazar EGRB spectrum including the distribution of the
photon index by assuming Gaussian distributions even with
∼50 samples. We performed the Kolomogorov–Smirnov test
to determine the goodness of fit of the Gaussian distribution
to our sample, and to check whether the method of Stecker &
Salamon (1996) and Pavlidou & Venters (2008) is applicable to

our sample. The chance probability is 12%. This means that the
Gaussian distribution does not agree with the data. To investigate
the distribution of the photon index, more samples would be
required.

We evaluate the uncertainties in SED models by using various
SEDs. Figure 4 shows the total EGRB spectrum (absorbed +
cascade) from the gamma-ray-loud radio galaxies with various
photon index and break energy parameters. The contribution
to the unresolved Fermi EGRB photon flux above 100 MeV
becomes 25.4%, 25.4%, and 23.8% for Γ = 2.39, 2.11, and
2.67, respectively. In the case of Γ = 2.11, the contribution to
the EGRB flux above 10 GeV becomes significant. For the MeV
background below 10 MeV, the position of the break energy
and the photon index is crucial to determine the contribution
of the gamma-ray-loud radio galaxies. As shown in Figure 4,
higher break energy and softer photon index result in a smaller
contribution to the MeV background radiation. To enable further
discussion on the SED modeling, the multiwavelength spectral
analysis of all GeV-observed gamma-ray-loud radio galaxies is
required.

5.3. Flaring Activity

It is well known that blazars are variable sources in gamma
rays (see, e.g., Abdo et al. 2009a, 2010d). If gamma-ray-loud
radio galaxies are the misaligned populations of blazars, they
will also be variable sources. Kataoka et al. (2010) have recently
reported that NGC 1275 showed a factor of ∼2 variation in
the gamma-ray flux. For other gamma-ray-loud radio galaxies,
such a significant variation has not been observed yet (Abdo
et al. 2010b). Currently, therefore, it is not straightforward to
model the variability of radio galaxies. In this paper, we used
the time-averaged gamma-ray flux of gamma-ray-loud radio
galaxies in the Fermi catalog, which is the mean of the Fermi 1 yr
observation. More observational information (e.g., frequency)
is required to model the gamma-ray variability of radio galaxies.
Further long-term Fermi observation will be useful, and future
observation by ground-based imaging atmospheric Cherenkov
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spectrum is given by

dN/dϵ ∝
{
ϵ−(p+1)/2 ϵ ! ϵbr,
ϵ−(p+2)/2 ϵ > ϵbr,

(1)

where ϵbr corresponds to the IC photon energy from electrons
with γbr (Rybicki & Lightman 1979).

The SED fitting for NGC 1275 and M87 shows that the IC
peak energy in the rest frame is located at ∼5 MeV (Abdo et al.
2009b, 2009c). In this study, we use the mean photon index, Γc,
as Γ at 0.1–10 GeV and set a peak energy, ϵbr, in the photon
spectrum at 5 MeV for all gamma-ray-loud radio galaxies as a
baseline model. Then, we are able to define the average SED
shape of gamma-ray-loud radio galaxies for all luminosities
as dN/dϵ ∝ ϵ−2.39 at ϵ >5 MeV and dN/dϵ ∝ ϵ−1.89 at
ϵ ! 5 MeV by following Equation (1).

However, only three sources are currently studied with multi-
wavelength observational data. We need to make further studies
of individual gamma-ray-loud radio galaxies to understand their
SED properties in wide luminosity ranges. We examine other
spectral models in Section 5.2.

3. GAMMA-RAY LUMINOSITY FUNCTION

3.1. Radio and Gamma-ray Luminosity Correlation

To estimate the contribution of gamma-ray-loud radio galax-
ies to the EGRB, we need to construct a GLF. However, because
of the small sample size, it is difficult to construct a GLF using
current gamma-ray data alone. Here, the RLF of radio galax-
ies has been extensively studied in previous works (see, e.g.,
Dunlop & Peacock 1990; Willott et al. 2001). If there is a cor-
relation between the radio and gamma-ray luminosities, we are
able to convert the RLF to the GLF with that correlation. In
the case of blazars, it has been suggested that there is a corre-
lation between the radio and gamma-ray luminosities from the
EGRET era (Padovani et al. 1993; Stecker et al. 1993; Salamon
& Stecker 1994; Dondi & Ghisellini 1995; Zhang et al. 2001;
Narumoto & Totani 2006), although it has also been discussed
that this correlation cannot be firmly established because of flux-
limited samples (Muecke et al. 1997). Recently, using the Fermi
samples, Ghirlanda et al. (2010, 2011) confirmed that there is a
correlation between the radio and gamma-ray luminosities.

To examine a luminosity correlation in gamma-ray-loud radio
galaxies, we first derive the radio and gamma-ray luminosity
of gamma-ray-loud radio galaxies as follows. Gamma-ray
luminosities between the energies ϵ1 and ϵ2 are calculated by

Lγ (ϵ1, ϵ2) = 4πdL(z)2 Sγ (ϵ1, ϵ2)
(1 + z)2−Γ , (2)

where dL(z) is the luminosity distance at redshift, z, Γ is the
photon index, and S(ϵ1, ϵ2) is the observed energy flux between
the energies ϵ1 and ϵ2. The energy flux is given from the photon
flux Fγ , which is in the unit of photons cm−2 s−1, above ϵ1 by

Sγ (ϵ1, ϵ2) = (Γ − 1)ϵ1

Γ − 2

[(
ϵ2

ϵ1

)2−Γ
− 1

]

Fγ , (Γ ̸= 2) (3)

Sγ (ϵ1, ϵ2) = ϵ1 ln(ϵ2/ϵ1)Fγ , (Γ = 2). (4)

Radio luminosity is calculated in the same manner.
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Figure 1. Gamma-ray luminosity at 0.1–10 GeV vs. radio luminosity at 5 GHz.
The square and triangle data represent FRI and FRII galaxies, respectively. The
solid line is the fit to all sources.
(A color version of this figure is available in the online journal.)

Figure 1 shows the 5 GHz and 0.1–10 GeV luminosity relation
of Fermi gamma-ray-loud radio galaxies. Square and triangle
data represent FRI and FRII radio galaxies, respectively. The
solid line shows the fitting line to all the data. The function is
given by

log10(Lγ ) = (−3.90±0.61) + (1.16±0.02) log10(L5 GHz), (5)

where errors show 1σ uncertainties. In the case of blazars, the
slope of the correlation between Lγ (>100 MeV), luminosity
above 100 MeV, and radio luminosity at 20 GHz is 1.07 ± 0.05
(Ghirlanda et al. 2011). The correlation slopes of gamma-ray-
loud radio galaxies are similar to those of blazars. This indicates
that the emission mechanism is similar in gamma-ray-loud radio
galaxies and blazars.

We need to examine whether the correlation between the
radio and gamma-ray luminosities is true or not. In the flux-
limited observations, the luminosities of samples are strongly
correlated with redshifts. This might result in a spurious lu-
minosity correlation. As in previous works on blazar samples
(Padovani 1992; Zhang et al. 2001; Ghirlanda et al. 2011),
we perform a partial correlation analysis to test the correla-
tion between the radio and gamma-ray luminosities exclud-
ing the redshift dependence (see the Appendix for details).
First, we calculate the Spearman rank–order correlation co-
efficients (see, e.g., Press et al. 1992). The correlation co-
efficients are 0.993, 0.993, and 0.979 between log10 L5 GHz
and log10 Lγ , between log10 L5 GHz and redshift, and between
log10 Lγ and redshift, respectively. Then, the partial correlation
coefficient becomes 0.866 with chance probability 1.65×10−6.
Therefore, we conclude that there is a correlation between the
radio and gamma-ray luminosities of gamma-ray-loud radio
galaxies.

3.2. Gamma-ray Luminosity Function

In this section, we derive the GLF of gamma-ray-loud radio
galaxies, ργ (Lγ , z). There is a correlation between the radio
and gamma-ray luminosities as shown in Equation (5). With
this correlation, we develop the GLF by using the RLF of radio
galaxies, ρr (Lr, z), with radio luminosity, Lr. The GLF is given

3
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Star-forming Galaxies

• Soltan ’99; Pavlidou & Fields ’02; Thompson +’07; Bhattacharya & Sreekumar 2009; Fields et al. 2010; Makiya et al. 2011; 
Stecker & Venters 2011; Lien+’12, Ackermann+’12; Lacki+’12; Chakraborty & Fields ’13; Tamborra+’14 

• Use gamma-ray and infrared luminosity correlation  

• ~10-30% of CGB at 0.1-100 GeV. 

• But, only ~10 sources are detected by Fermi.

The Astrophysical Journal, 755:164 (23pp), 2012 August 20 Ackermann et al.
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Figure 7. Estimated contribution of unresolved star-forming galaxies (both
quiescent and starburst) to the isotropic diffuse gamma-ray emission measured
by the Fermi-LAT (black points; Abdo et al. 2010f). The shaded regions indicate
combined statistical and systematic uncertainties in the contributions of the
respective populations. Two different spectral models are used to estimate the
GeV gamma-ray emission from star-forming galaxies: a power law with photon
index 2.2, and a spectral shape based on a numerical model of the global gamma-
ray emission of the Milky Way (Strong et al. 2010). These two spectral models
should be viewed as bracketing the expected contribution since multiple star-
forming galaxy types contribute, e.g., dwarfs, quiescent spirals, and starbursts.
We consider only the contribution of star-forming galaxies in the redshift range
0 < z < 2.5. The gamma-ray opacity of the universe is treated using the
extragalactic background light model of Franceschini et al. (2008). Several
previous estimates for the intensity of unresolved star-forming galaxies are
shown for comparison. Thompson et al. (2007) treated starburst galaxies as
calorimeters of CR nuclei. The normalization of the plotted curve depends on
the assumed acceleration efficiency of SNRs (0.03 in this case). The estimates
of Fields et al. (2010) and by Makiya et al. (2011) incorporate results from the
first year of LAT observations. Fields et al. (2010) considered the extreme cases
of either pure luminosity evolution and pure density evolution of star-forming
galaxies. Two recent predictions from Stecker & Venters (2011) are plotted: one
assuming a scaling relation between IR-luminosity and gamma-ray luminosity,
and one using a redshift-evolving Schechter model to relate galaxy gas mass to
stellar mass.
(A color version of this figure is available in the online journal.)

this component and to predict the cosmogenic ultra-high energy
neutrino flux originating from charged pion decays of the ultra-
high energy CR interactions (Ahlers et al. 2010; Berezinsky
et al. 2011; Wang et al. 2011).

Galactic sources, such as a population of unresolved millisec-
ond pulsars at high Galactic latitudes, could become confused
with isotropic diffuse emission as argued by Faucher-Giguère
& Loeb (2010). Part of the IGRB may also come from our Solar
System as a result of CR interactions with debris of the Oort
Cloud (Moskalenko & Porter 2009).

Finally, a portion of the IGRB may originate from “new
physics” processes involving, for instance, the annihilation or
decay of dark matter particles (Bergström et al. 2001; Ullio et al.
2002; Taylor & Silk 2003).

Studies of anisotropies in the IGRB intensity on small angular
scales provide another approach to identify IGRB constituent
source populations (Siegal-Gaskins 2008). The fluctuation an-
gular power contributed by unresolved star-forming galaxies is
expected to be small compared to other source classes because
star-forming galaxies have the highest spatial density among
confirmed extragalactic gamma-ray emitters, but are individ-
ually faint (Ando & Pavlidou 2009). Unresolved star-forming
galaxies could in principle explain the entire IGRB intensity
without exceeding the measured anisotropy (Ackermann et al.
2012a). By contrast, the fractional contributions of unresolved
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Figure 8. Relative contribution of star-forming galaxies to the isotropic diffuse
gamma-ray background according to their redshift and total IR luminosity
(8–1000 µm) normalized to the total contribution in the redshift range 0 < z <
2.5. Top panel: solid contours indicate regions of phase space which contribute
an increasing fraction of the total energy intensity (GeV cm−2 s−1 sr−1) from all
star-forming galaxies with redshifts 0 < z < 2.5 and 108 L⊙ < L8–1000 µm <

1013 L⊙. Contour levels are placed at 10% intervals. The largest contribution
comes from low-redshift Milky Way analogues (L8–1000 µm ∼ 1010 L⊙) and
starburst galaxies comparable to M82, NGC 253, and NGC 4945. The black
dashed curve indicates the IR luminosity above which the survey used to generate
the adopted IR luminosity function is believed to be complete (Rodighiero et al.
2010). Bottom panel: cumulative contribution vs. redshift. As above, only the
redshift range 0 < z < 2.5 is considered.
(A color version of this figure is available in the online journal.)

blazars and millisecond pulsars to the IGRB intensity are con-
strained to be less than ∼20% and ∼2%, respectively, due to
larger angular power expected for those source classes.

6. GALAXY DETECTION OUTLOOK
FOR THE FERMI-LAT

The scaling relations obtained in Section 4.3 allow straight-
forward predictions for the next star-forming galaxies which
could be detected by the LAT. We use the relationship between
gamma-ray luminosity and total IR luminosity to select the most
promising targets over a 10 year Fermi mission.

We begin by creating an IR flux-limited sample of galaxies
from the IRAS Revised Bright Galaxies Sample (Sanders et al.
2003) by selecting all the galaxies with 60 µm flux density
greater than 10 Jy (248 galaxies). Next, 0.1–100 GeV gamma-
ray fluxes of the galaxies are estimated using the scaling
relation between gamma-ray luminosity and total IR luminosity.
Intrinsic dispersion in the scaling relation is addressed by
creating a distribution of predicted gamma-ray fluxes for each

18

Ackermann+’12

The Astrophysical Journal, 755:164 (23pp), 2012 August 20 Ackermann et al.

)-1 (W Hz1.4 GHzL

1910 2010 2110 2210 2310 2410

)
-1

 (
er

g 
s

0.
1-

10
0 

G
eV

L

3710

3810

3910

4010

4110

4210

4310

)-1 yrSFR (M
-210 -110 1 10 210 310

M33
M31

SMC

NGC 6946

Milky Way

M82
M83

Arp 220

NGC 4945

IC 342

NGC 253

NGC 1068NGC 2146

LMC

LAT Non-detected (Upper Limit)

LAT Non-detected with AGN (Upper Limit)

LAT Detected
LAT Detected with AGN

Best-fit
Fit Uncertainty
Dispersion

Calorimetric Limit
 erg)50 = 10η 

SN
(E

) (W Hz1.4 GHzL

1910 2010 2110 2210 2310 2410

)
 (

er
g 

s
0.

1-
10

0 
G

eV
L

3710

3810

3910

4010

4110

4210

4310

)-1 (W Hz1.4 GHzL

1910 2010 2110 2210 2310 2410

1.
4 

G
H

z
 / 

L
0.

1-
10

0 
G

eV
L

10

210

310

410

510

)-1 yrSFR (M
-210 -110 1 10 210 310

M33

M31SMC
NGC 6946

Milky Way

M82

M83

Arp 220

NGC 4945IC 342

NGC 253

NGC 1068

NGC 2146

LMC

LAT Non-detected (Upper Limit)

LAT Non-detected with AGN (Upper Limit)

LAT Detected
LAT Detected with AGN

Best-fit
Fit Uncertainty
Dispersion

Calorimetric Limit
 erg)50 = 10η 

SN
(E

) (W Hz1.4 GHzL

1910 2010 2110 2210 2310 2410

1.
4 

G
H

z
 / 

L
0.

1-
10

0 
G

eV
L

10

210

310

410

510

Figure 3. Top panel: gamma-ray luminosity (0.1–100 GeV) vs. RC luminosity
at 1.4 GHz. Galaxies significantly detected by the LAT are indicated with filled
symbols whereas galaxies with gamma-ray flux upper limits (95% confidence
level) are marked with open symbols. Galaxies hosting Swift-BAT AGNs are
shown with square markers. RC luminosity uncertainties for the non-detected
galaxies are omitted for clarity, but are typically less than 5% at a fixed distance.
The upper abscissa indicates SFR estimated from the RC luminosity according to
Equation (2) (Yun et al. 2001). The best-fit power-law relation obtained using the
EM algorithm is shown by the red solid line along with the fit uncertainty (darker
shaded region), and intrinsic dispersion around the fitted relation (lighter shaded
region). The dashed red line represents the expected gamma-ray luminosity
in the calorimetric limit assuming an average CR luminosity per supernova
of ESN η = 1050 erg (see Section 5.1). Bottom panel: ratio of gamma-ray
luminosity (0.1–100 GeV) to RC luminosity at 1.4 GHz.
(A color version of this figure is available in the online journal.)

Although these three SFR estimators are intrinsically linked,
each explores a different stage of stellar evolution and is
subject to different astrophysical and observational systematic
uncertainties.

Figures 3 and 4 compare the gamma-ray luminosities of
galaxies in our sample to their differential luminosities at
1.4 GHz, and total IR luminosities (8–1000 µm), respectively.
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Figure 4. Same as Figure 3, but showing gamma-ray luminosity (0.1–100 GeV)
vs. total IR luminosity (8–1000 µm). IR luminosity uncertainties for the non-
detected galaxies are omitted for clarity, but are typically ∼0.06 dex. The
upper abscissa indicates SFR estimated from the IR luminosity according to
Equation (1) (Kennicutt 1998b).
(A color version of this figure is available in the online journal.)

A second abscissa axis has been drawn on each figure to
indicate the estimated SFR corresponding to either RC or total
IR luminosity using Equations (2) and (1). The upper panels
of Figures 3 and 4 directly compare luminosities between
wavebands, whereas the lower panels compare luminosity ratios.
Taken at face value, the two figures show a clear positive
correlation between gamma-ray luminosity and SFR, as has
been reported previously in LAT data (see in this context Abdo
et al. 2010b). However, sample selection effects, and galaxies
not yet detected in gamma rays must be taken into account to
properly determine the significance of the apparent correlations.

We test the significances of multiwavelength correlations
using the modified Kendall τ rank correlation test proposed by
Akritas & Siebert (1996). This method is an example of “survival

9
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Sum of Components 

•  Blazars, star-forming galaxies and radio galaxies can explain the intensity 
and the spectrum of the EGB 

Preliminary 

As usual: it does not include the systematic uncertainty on the EGB!

Components of Cosmic Gamma-ray Background

• FSRQs (Ajello+’12), BL Lacs (Ajello+’14), Radio gals. (YI’11), & Star-forming gals. (Ackermann

+’12) makes almost 100% of CGB from 0.1-1000 GeV. 

• However, we need to assume SEDs at higher energies. 

• See Di Mauro’s talk

Ajello at HEM14



Future CGB studies

• Anisotropy of Cosmic GeV Gamma-ray Background 

• Searching Dark Matter signature 

• Cosmic MeV Gamma-ray Background 

• Origins are still unknown. 

• Cosmic TeV Gamma-ray Background 

• Connection to the IceCube TeV-PeV neutrinos



Anisotropy of Cosmic Gamma-
ray Background



Anisotropy of Cosmic Gamma-ray Background

• Anisotropy puts strong constraints on the evolutionary models of 
blazars (Cuoco+’12, Harding & Abazajian ‘13). 

• CGB anisotropy is well explained by known radio-loud AGN 
populations (Di Mauro+’14) -> See Donato’s talk.
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Figure 4. The angular power CP(E) for MAGN (red long-dashed points), LISP (blue short-
dashed) and HSP BL Lacs (green dotted), FSRQs (yellow dot-dashed), and the total anisotropy
(violet solid) from all the radio-loud AGN is shown in two di↵erent units (CP(E) in the top panel
and E4CP(E)/(�E)2 in the bottom panel). The data measured in the four energy bins analyzed
by the Fermi-LAT Collaboration [2] are also shown (black solid points).

and BL Lacs from [5]) compared with the case of FSRQs from [4] and BL Lacs from [6]

and with the observed anisotropy. The model of [6] yields a larger anisotropy than the

model of [5] in all energy bands, although still compatible with the measured Fermi-LAT

– 11 –

scenarios we test an alternative fit to the blazar logN-logS
obtained by Stecker and Venters [13]. A notable feature of
this alternative fit is that it can account for !60% of the
IGRB intensity in the 1–10 GeV energy band. We have
calculated CP from the logN-logS of the Stecker and
Venters model [13,14] and, using a threshold of 5:0"
10#10 cm#2 s#1 (the same used in the rest of our analysis),
obtain CP ¼ ð3:0& 0:5Þ " 10#17 ðcm#2 s#1 sr#1Þ2 sr (the
error reported on this prediction being likely an overesti-
mate since it neglects the covariance of the parameters).
This value is a factor of !3:0 larger than the measured
value, and is inconsistent with CP;data at 3:7!. The anisot-
ropy data thus strongly excludes this blazar model. In addi-
tion, we remark that the recent analysis of Ref. [15] using
the blazar model of Ref. [16] reaches conclusions similar to
those of the present study: those authors find that the mea-
sured IGRB anisotropy places a strong constraint on the
contribution of blazars to the intensity of the IGRB, and that,
assuming the model considered in that work, blazars cannot
contribute a substantial fraction of the IGRB intensity.

Comparing the measured anisotropy of the IGRB and
the predicted anisotropy from blazars leads to another
important conclusion. Since, for the best-fit source count
distribution, blazars already account for !100% of the
observed anisotropy and, in intensity units, Poisson angular
power is additive, the remaining component (or compo-
nents) making !80% of the IGRB intensity must contrib-
ute a low level of anisotropy in order to not overproduce
the observed angular power. Interestingly, this can be

achieved quite naturally since some proposed contributors
to the IGRB, such as star-forming galaxies [8], are
expected to contribute negligibly to the anisotropy. On
the other hand, this result implies strong constraints on
source populations with large intrinsic anisotropy.
We emphasize that the anisotropy and intensity contribu-

tions from a source population have different dependences
on the source count distribution, and consequently they
represent complementary observables which are sensitive

FIG. 3 (color online). Left: Constraints on blazar logN-logS parameters (break flux, Sb, and faint-end slope, ") from the intensity
and anisotropy of the IGRB. Regions in which blazars provide 100% of the observed IGRB anisotropy and mean intensity in the
1–10 GeV energy band are shown; the widths of the regions indicate the 68% confidence intervals. Below these regions blazars
overproduce the anisotropy and mean intensity. Labeled contours show the fraction of the blazar contribution to the IGRB intensity.
The best-fit 1! parameter region from the Fermi source count analysis [4] is marked, along with the best-fit Sb [4] (dot-dashed line).
Right: Expanded view around the region of parameter space in the left panel where blazars contribute 100% of both the measured
IGRB anisotropy and intensity.

FIG. 4 (color online). Cumulative contribution of blazars in
linear (top) and log (bottom) scale to the IGRB anisotropy
(dashed) and intensity (solid) for the Fermi best-fit logN-logS
(E > 100 MeV) as a function of source intensity.

JOINT ANISOTROPY AND SOURCE COUNT CONSTRAINTS . . . PHYSICAL REVIEW D 86, 063004 (2012)

063004-5
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Anisotropy & Dark Matter

• Angular power spectra of CGB is a powerful tool to constrain the 
DM properties (e.g. Ando & Komatsu ’06, ’13). 

• Cross-correlation between cosmic shear and CGB will be a new 
powerful tool (e.g. Shirasaki+’14) -> See Shirasaki’s talk.

subhalo mass function, spatial distribution, and mass-
concentration relation [cvirðMÞ] are adopted from recent
numerical simulations of the Galactic halo, Aquarius [55].
More details on how to apply these models to gamma-ray
computations are described in Ref. [20].

The intensity angular power spectrum is

Csh
‘ ¼ 1

16!2

Z
dL

Z ds

s2
L2 dnshðL; sÞ

dL

!!!!!!!!~ush

"
‘

s
;M

#!!!!!!!!
2
;

(23)

where ~ushðk;MÞ is the Fourier transform of the density-
squared profile of the subhalo distribution, which is given
by Eq. (13) if the density distribution of subhalos follows
a NFW profile. Note that Eq. (23) only includes a
‘‘one-subhalo’’ term, where one correlates two points in
one identical subhalo. There is, however, the two-subhalo
term that correlates two points in two distinct subhalos, but
this term is much smaller than the one-subhalo term at
small angular scales [20].

Figure 15 shows the predicted angular power spectra
from Galactic subhalos and extragalactic halos (but not
including the cross correlation). We have used the canoni-
cal model of the Galactic subhalos given in Ref. [55],
which has the mass resolution of about 4$ 104M%. We
have extrapolated their result down to the Earth-mass scale
(model A1 of Ref. [20]). The intensity power spectrum is
about the same for both the extragalactic and Galactic
components, with the latter slightly larger in the angular
scales constrained by Fermi-LAT.

In Fig. 16, we show the limits on h"vi from the Fermi-
LAT data, taking into account both the extragalactic and

Galactic terms. As expected, the limits from either alone
are similar, and the combined limits improve by a factor
of 2. In particular, for low-mass dark matter particles,
the combined limits are only a factor of 3 larger than the
canonical cross section. The limits are weaker for larger
masses.
While our limits are not yet as stringent as those

obtained from analyses of dwarf galaxies [56,57] or
galaxy clusters [46,58], where the canonical cross sec-
tion is already excluded for low-mass (&10 GeV) dark
matter particles, they are not so far away (i.e., only a
factor of 3 to 4 worse). Also, our limits are derived in a
completely different way: they are based on the diffuse
emission rather than on individual objects, and they are
based on anisotropy rather than on the mean intensity. It
is certainly encouraging that the first limits using the
DGRB anisotropy are already not so far away from the
best limits.

V. CONCLUSIONS

In this paper, we have used the angular power spectrum
of DGRB recently detected in the 22-month data of Fermi-
LAT [27] to place limits on the annihilation cross section of
dark matter particles as a function of dark matter masses.
As dark matter annihilation occurs in all cosmological
halos and subhalos, our model includes all the contributing
terms in the extragalactic halos, the Galactic subhalos, and
the cross correlation between dark matter annihilation and
blazars. The smooth Galactic component is predicted to be

FIG. 15 (color online). Predicted angular power spectra of the
DGRB in 5–10 GeV from dark matter annihilation in extraga-
lactic halos (dotted), Galactic subhalos (dashed), and the sum of
the two (solid).

FIG. 16 (color online). The same as Fig. 11, but for the limits
obtained from the Galactic subhalos (dashed), extragalactic
halos (dot-dashed), and the sum of the two (solid). The
dot-dashed line is the same as the solid line in Fig. 11. The
dotted lines show the Galactic subhalo limits from each of
four energy bins.

SHIN’ICHIRO ANDO AND EIICHIRO KOMATSU PHYSICAL REVIEW D 87, 123539 (2013)

123539-10

Ando&Komatsu ‘13

FIG. 4. The 68 % confidence level upper limits on ⟨σv⟩ as a function of DM mass. The red shaded

region shows the upper bound for the τ+τ− channel and the green region is for the bb̄ channel.

Note that the widths of the shaded regions indicate the model uncertainty. For each shaded region,

the upper curve is derived by our benchmark model with Mmin = 106M⊙ and the lower curve is

obtained from the model with Mmin = 10−6M⊙.

case with Mmin = 10−6M⊙ and on the conservative case with Mmin = 106M⊙.

Figure 4 shows the result of our likelihood analysis on the DM parameter space mdm

and ⟨σv⟩. We plot the constraints for two representative particle physics model, the τ+τ−

channel and the bb̄ channel. We also show the results for the two choices of Mmin. The

constraint for the small Mmin is significantly stronger, as is expected. The annihilation

cross-section is more severely constrained for the τ+τ− channel because of its harder gamma-

ray spectra that contribute photons at higher energies than for the bb̄ channel of the same

DM mass. For reference, the horizontal dashed line indicates the canonical cross section of

⟨σv⟩ = 3× 10−26 cm3 s−1 for a thermally produced DM.

A. Future forecast

Future weak lensing surveys are aimed at measuring cosmic shear over a wide area of more

than a thousand square degrees. Such observational programs include the Subaru Hyper

Suprime-Cam (HSC) 1, the Dark Energy Survey (DES) 2, and the Large Synoptic Survey
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Cosmic MeV Gamma-ray 
Background
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Seyferts and Cosmic MeV Gamma-ray Background

• Required non-thermal 
electron distribution is 
similar to that in solar 
flares and Earth’s 
magnetotail 

➡Magnetic reconnection-
heated corona?  
(Liu, Mineshige, & Shibata ’02) 

• ALMA may probe the 
corona heating scenario 
(YI & Doi ’14, YI & Doi in prep.).

YI+’08

E
2  d

N
/d

E
 (k

eV
/c

m
2 /s

/s
r)

Energy (keV)

thermal

w/ non-
thermal



Blazars and Cosmic MeV Gamma-ray Background

• FSRQs contribute to the GeV gamma-ray background with a 
peak at ~100 MeV (e.g. YI & Totani ’09, Ajello +’12) 

➡Two components in gamma-ray spectra or two FSRQ 
populations?

616 AJELLO ET AL. Vol. 699
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Figure 15. Spectrum of the CXB and contribution of the FSRQs (blue region). The data points are different measurements of the diffuse background as indicated in
the label (Fukada et al. 1975; Gendreau et al. 1995; Watanabe et al. 1997; Weidenspointner et al. 2000; Revnivtsev et al. 2003; Ajello et al. 2008b). The dashed line is
the total contribution of Seyfert-like AGNs computed with the model of Gilli et al. (2007) arbitrarily multiplied by 1.1 to fit the CXB emission at 30 keV. The solid
line is the sum of the Seyfert-like and FSRQs. The spectrum of FSRQs has been modeled as a power-with a mean photon index of 1.6. The blue region represents the
range of values obtained from the Monte Carlo realizations of best-fit parameter ranges. The magenta solid line represents the contribution of BL Lac objects whose
uncertainty is not plotted for clarity, but is, due to the low number of objects, >30% at any energy.
(A color version of this figure is available in the online journal.)
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Figure 16. Contribution of FSRQs (blue region) to the CXB. The data are the same as in Figure 15, but in this case the SED of the FSRQs has been modeled with
a double power-law function. The IC peak is located in the ∼MeV region. The contribution of BL Lac objects is the same as in Figure 15 and is not drawn here for
clarity. The blue region represents the range of values obtained from the Monte Carlo realizations of best-fit parameter ranges.
(A color version of this figure is available in the online journal.)

contribution of FSRQs assuming that their IC peak is located
in the MeV band. We find that in this case FSRQs account for
the entire CXB emission up to 10 MeV. While there is basically
no difference with respect to the single power-law case below
500 keV, the curvature of the IC peak makes the contribution of
FSRQs to the CXB slightly smaller around 1 MeV. We also note
that moving the IC peak beyond 10 MeV produces a negligible
curvature in the FSRQ integral emission and thus this case is
well represented by the single power-law model.

Thus, the two analyses shown here cover well the case in
which the IC peak is either located at MeV or at GeV energies

(double and single power-law model, respectively). We must
therefore conclude that the contribution of FSRQs to the diffuse
emission is relevant and likely accounts for a substantial fraction
(potentially ∼100%) of the CXB around 1 MeV. Interpreting
the CXB as a strong constraint, we derive that the population
of FSRQ sampled by BAT must have the IC peak located
in the MeV band in order not to overproduce the diffuse
background at ∼10 MeV. Bhattacharya et al. (2009) recently
reported for the FSRQs detected by EGRET a mean photon
index of 2.34 ± 0.15. Since FSRQs have a mean photon index
of 1.6 in BAT, this implies already that the IC peak is located

Ajello+’09
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Figure 11. Contribution of unresolved (top) and total (resolved plus unresolved, bottom) FSRQs to the diffuse extragalactic background (blue line) as determined
by integrating the luminosity function coupled to the SED model derived in Section 5.3. The hatched band around the best-fit prediction shows the 1σ statistical
uncertainty while the gray band represents the systematic uncertainty.
(A color version of this figure is available in the online journal.)

e.g., BL Lac objects and starburst galaxies make significant
contributions to the IGRB intensity.

7. BEAMING: THE INTRINSIC LUMINOSITY FUNCTION
AND THE PARENT POPULATION

The luminosities L defined in this work are apparent isotropic
luminosities. Since the jet material is moving at relativistic speed
(γ >1), the observed, Doppler boosted, luminosities are related
to the intrinsic values by

L = δpL, (21)

where L is the intrinsic (unbeamed) luminosity and δ is the
kinematic Doppler factor

δ = (γ −
√

γ 2 − 1 cos θ )−1, (22)

where γ = (1−β2)−1/2 is the Lorentz factor and β = v/c is the
velocity of the emitting plasma. Assuming that the sources have
a Lorentz factor γ in the γ1 ! γ ! γ2 range then the minimum
Doppler factor is δmin = γ −1

2 (when θ = 90◦) and the maximum
is δmax = γ2 +

√
γ 2

2 −1 (when θ = 0◦). We adopt a value of p = 4
that applies to the case of jet emission from a relativistic blob
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Cosmic MeV Gamma-ray Background “Anisotropy”

•  Astro-H (SGD) / future MeV satellites will distinguish 
Seyfert & blazar scenarios through anisotropy in the sky.
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Upper Limit on Cosmic Gamma-ray Background

• Cascade component from VHE CGB can not exceed the Fermi data 

(Coppi & Aharonian ’97, YI & Ioka ’12, Murase+’12, Ackermann+’14). 

• No or negative evolution is required -> HBLs show negative 
evolution (Ajello+’14).

Cascade
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IceCube Neutrinos and Cosmic Gamma-ray Background

• Extragalactic pp scenario (galaxies or clusters) for IceCube events will 
provide 30-100 % of CGB (Murase+’13). 

• Extragalactic pγ scenario (e.g. FSRQs) depends on the target photon 
spectra (e.g. Murase, YI, & Dermer ’14, Dermer, Murase, & YI ’14). 

• -> See Ahlers’ talk & Reimer’s talk.

2

Note that the neutrino energy is less for nuclei with the
same energy, since the energy per nucleon is lower. The
energy per nucleon should exceed the knee at 3–4 PeV.
Given the differential CR energy budget at z = 0, QEp

,
the INB flux per flavor is estimated to be [5, 11]

E2
νΦνi ≈

ctHξz
4π

1

6
min[1, fpp](EpQEp

) (2)

where tH ≃ 13.2 Gyr and ξz is the redshift evolution
factor [5, 17]. The pp efficiency is

fpp ≈ nκpσ
inel
pp ctint, (3)

where κp ≈ 0.5, σinel
pp ∼ 8×10−26 cm2 at ∼ 100 PeV [19],

n is the typical target nucleon density, tint ≈ min[tinj, tesc]
is the duration that CRs interact with the target gas, tinj
is the CR injection time and tesc is the CR escape time.
The pp sources we consider should also contribute to

the IGB. As in Eq. (2), their generated IGB flux is

E2
γΦγ ≈

ctHξz
4π

1

3
min[1, fpp](EpQEp

), (4)

which is related to the INB flux model independently as

E2
γΦγ ≈ 2(E2

νΦνi)|Eν=0.5Eγ
. (5)

Given E2
νΦνi , combing Eq. (5) and the upper limit

from the Fermi IGB measurement E2
γΦ

up
γ leads to Γ ≤

2+ln[E2
γΦ

up
γ |100 GeV/(2E2

νΦνi |Eν
)][ln(2Eν/100 GeV)]−1.

Using E2
νΦνi = 10−8 GeV cm−2 s−1 sr−1 as the measured

INB flux at 0.3 PeV [3, 4, 20], we obtain

Γ ! 2.185

[

1 + 0.265 log10

(

(E2
γΦ

up
γ )|100 GeV

10−7 GeV cm−2 s−1 sr−1

)]

.

(6)
Surprisingly, the measured (all flavor) INB flux is com-
parable to the measured diffuse IGB flux in the sub-TeV
range, giving us new insights into the origin of the Ice-
Cube signal; source spectra of viable pp scenarios must
be quite hard. Numerical results, considering intergalac-
tic electromagnetic cascades [22] and the detailed Fermi
data [14], are shown in Figs. 1-3. We derive the strong
upper limits of Γ ! 2.1–2.2, consistent with Eq. (6). In
addition, we first obtain the minimum contribution to
the 100 GeV diffuse IGB, " 30%–40%, assuming Γ ≥ 2.0.
Here, the IGB flux at ∼ 100 GeV is comparable to the
generated γ-ray flux (see Fig. 3) since the cascade en-
hancement compensates the attenuation by the extra-
galactic background light, enhancing the usefulness of
our results. Also, interestingly, we find that pp scenar-
ios with Γ ∼ 2.1–2.2 explain the “very-high-energy ex-
cess” [17] with no redshift evolution, or the multi-GeV
diffuse IGB with the star-formation history, which may
imply a common origin of the INB and IGB.
Importantly, our results are insensitive to redshift evo-

lution models. In Fig. 3, we consider the different redshift
evolution. But the result is essentially similar to those
in Figs. 1 and 2. In Figs. 1-3, the maximum redshift
is set to zmax = 5, while we have checked that the re-
sults are practically unchanged for different zmax. This
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FIG. 1: The allowed range in pp scenarios explaining the mea-
sured INB flux, which is indicated by the shaded area with
arrows. With no redshift evolution, the INB (dashed) and
corresponding IGB (solid) are shown for Γ = 2.0 (thick) and
Γ = 2.14 (thin). The shaded rectangle indicates the IceCube
data [4]. The atmospheric muon neutrino background [21]
and the diffuse IGB data by Fermi/LAT [14] are depicted.
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FIG. 2: The same as Fig. 1, but for Γ = 2.0 (thick) and
Γ = 2.18 (thin) with the star-formation history [23].

is because ξz in Eqs. (2) and (4) is similar and cancels
out in obtaining Eq. (5). This conclusion largely holds
even if neutrinos and γ rays are produced at very high
redshifts. Interestingly, our results are applicable even to
unaccounted-for Galactic sources, since the diffuse IGB is
a residual isotropic component obtained after subtract-
ing known components including diffuse Galactic emis-
sion. If we use the preliminary Fermi data, based on the
unattenuated γ-ray flux in Fig. 3, only Γ ∼ 2.0 is allowed.
Note that such powerful constraints are not obtained

for pγ scenarios. First, pγ reactions are typically efficient
only for sufficiently high-energy CRs, so the resulting γ
rays can contribute to the IGB only via cascades – low-
energy pionic γ rays do not directly contribute and the
differential flux is reduced by their broadband spectra, as
demonstrated in [24]. More seriously, in pγ sources like
GRBs and AGN, target photons for pγ reactions often
prevent GeV-PeV γ rays from leaving the source, so the
connection is easily lost [25]. Furthermore, synchrotron
cooling of cascade e± may convert the energy into x rays
and low-energy γ rays, for which the diffuse IGB is not
constraining. In contrast, pp sources considered here are

Murase+’13
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Fig. 4 The luminosity spectrum of neutrinos of all flavors from
an FSRQ with δD = Γ = 30, using parameters of a flaring
blazar given in Table 1. The radiation fields are assumed
isotropic with energy densities uBLR = 0.026 erg cm−3 for the
BLR field, uIR = 0.001 erg cm−3 for the graybody IR field. For
the scattered accretion-disk field, τsc = 0.01 is assumed. The
proton spectrum is described by a log-parabola function with
log-parabola width b = 1 and principal Lorentz factor
γpk = Γγ

′
pk = 107.5. Separate single-, double- and multi-pion

components comprising the neutrino luminosity spectrum
produced by the BLR field are shown by the light dotted
curves for the photohadronic and β-decay neutrinos. Separate
components of the neutrino spectra from photohadronic
interactions with the synchrotron, BLR, IR, and scattered
accretion-disk radiation are labeled.

accretion-disk and IR photons, we improve the approximation
by correcting the neutrino spectrum by adding a low-energy ex-
tension with νFν index equal to +1 if the νFν spectrum cal-
culated in the δ-function approximation to the mean neutrino
energy becomes harder than +1. No correction is made for the
spectrum of β-decay neutrinos in the δ-function approximation
for average neutrino energy. For detailed numerical calcula-
tions, see, e.g., Ref. (43).

Fig. 4 shows a calculation of the luminosity spectrum of
neutrinos of all flavors produced by a curving distribution of
protons in a flaring FSRQ like 3C 279 with a peak synchrotron
frequency of 1013 Hz and peak synchrotron luminosity of 1047

erg s−1 (parameters of Table 1). The log-parabola width param-
eter b = 1 is assumed for both the electron and proton distribu-
tions. Here and below, we take E′p = 1051/Γ erg, which implies
sub-Eddington jet powers for jet ejections occurring no more
frequently than once every 104M9 s, where M9 is the black-hole
mass in units of 109 M⊙ (we take M9 = 1). The separate compo-
nents for single-pion, double-pion, and multi-pion production
from interactions with the BLR radiation are shown for both the
pion-decay and neutron β-decay neutrinos. In this calculation,
the proton principal Lorentz factor γ pk = 107.5, correspond-
ing to source-frame principal proton energies of Ep ≈ 3 × 1016

eV. Because the efficiency for synchrotron interactions in low-
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Fig. 5 Total luminosity spectra of neutrinos of all flavors from
model FSRQs with parameters as given in Fig. 4, except as
noted. In curve 1, parameters of a quiescent blazar from Table
1, with γpk = 107.5, are used. Curves 2 – 6 use parameters for a
flaring blazar as given in Table 1. In curves 2, 3, and 4,
γpk = 107.5, 107, and 108, respectively. Curves 5 and 6 use the
same parameters as curve 1, except that b = 2 and b = 0.5,
respectively.

synchrotron peaked blazars is low until Ep ! 1020 eV, as seen
in Fig. 3, neutrino production from the synchrotron component
is consequently very small. Interactions with the blazar BLR
radiation is most important, resulting for this value of γ pk in a
neutrino luminosity spectrum peaked at a few PeV, and with a
cutoff below ≈ 1 PeV.

Comparisons between luminosity spectra of neutrinos of all
flavors for parameters corresponding to the quiescent phase of
blazars, and for different values of γpk and b, as labeled, are
shown in Fig. 5. As can be seen, the low-energy hardening
in the neutrino spectrum below ≈ 1 PeV is insensitive to the
assumed values of γpk and b.

6. Discussion

We have calculated neutrino production formed by photo-
hadronic interactions of protons in the inner jets of black-hole
jet sources, and calculate a single-source neutrino spectrum semi-
analytically. Implications for the UHECR/neutrino connection,
particle acceleration in jets, and the contribution to the diffuse
neutrino background are now considered.

6.1. UHECR/High-Energy Neutrino Connection
High-energy neutrino sources are obvious UHECR source

candidates, though production of PeV neutrinos requires pro-
tons with energies of “only” Ep ! 1016 – 1017 eV. The close
connection between neutrino and UHECR production implies
the well-known Waxman-Bahcall (WB) bound on the diffuse
neutrino intensity at the level of ∼ 3 × 10−8 GeV/cm2-s-sr (44),
and the similarity of the IceCube PeV neutrino flux with the
WB bound has been noted (45). Nevertheless, our results show
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Constraints from Gamma rays

• Fermi derived the COB opacity using the combined spectra 
of blazars (see also Gong & Cooray ’13, Dominguez +’13). 

• H.E.S.S. derived the COB intensity using the combined 
spectra of blazars.

sources above the critical energy (30). This in
turn depends on a precise description of the
gamma-ray spectra by our source parametriza-
tion. To verify that this is the case and to ex-
clude the possibility that the detected absorption
feature is intrinsic to the gamma-ray sources (17),
we performed the analysis in three independent
redshift intervals (z < 0.2, 0.2 ≤ z < 0.5, and 0.5 ≤
z < 1.6). The deviations from the intrinsic spectra
in the three redshift intervals are displayed in Fig.
2. In the local universe (z < 0.2), EBL absorption
is negligible in most of the Fermi-LAT energy

band (Ecrit ≥ 120 GeV). The lowest redshift in-
terval therefore reveals directly the intrinsic spec-
tra of the sources and shows that our spectral
parametrization is accurate (18). The absorption
feature is clearly visible above the critical energy
in the higher redshift bins. Its amplitude and mod-
ulation in energy evolve with redshift as expected
for EBL absorption. In principle, the observed
attenuation could be due to a spectral cutoff that
is intrinsic to the gamma-ray sources. The absence
of a cutoff in the spectra of sources with z < 0.2
would require that the properties of BLLacs change

with redshift or luminosity. It remains an issue of
debatewhether such evolution exists (31–34). How-
ever, in case itwere present, the intrinsic cutoffwould
be expected to evolve differently with redshift than
we observe. To illustrate this effect, we fitted the
blazar sample assuming that all the sources have an
exponential cutoff at an energy E0. From source
to source, the observed cutoff energy changes be-
cause of the source redshift and because we as-
sumed that blazars as a population are distributed
in a sequence such as that proposed in (31–34).
E0 was fitted to the data globally like b above. As
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Fig. 1. Measurement, at the 68 and 95% confi-
dence levels (including systematic uncertainties
added in quadrature), of the opacity tgg from the
best fits to the Fermi data compared with predic-
tions of EBL models. The plot shows the measure-
ment at z ≈ 1, which is the average redshift of the
most constraining redshift interval (i.e., 0.5 ≤ z <
1.6). The Fermi-LAT measurement was derived com-
bining the limits on the best-fit EBL models. The
downward arrow represents the 95% upper limit on
the opacity at z = 1.05 derived in (13). For clarity,
this figure shows only a selection of the models we
tested; the full list is reported in table S1. The EBL
models of (49), which are not defined for E ≥ 250/
(1 + z) GeV and thus could not be used, are reported
here for completeness.
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Fig. 5. Flux density of the extragalactic background light versus wave-
length. The 1σ (statistical) contours derived for several energy ranges
are described in the top-right legend. The systematic uncertainty is
added quadratically to the statistical one to derive the H.E.S.S. con-
tour. Lower limits based on galaxy counts and direct measurements are
respectively shown with empty upward and filled downward pointing
triangles (extracted from Gilmore et al. 2012). The region excluded by
Meyer et al. (2012) with VHE spectra is represented by the dashed area.

Table 6. Measured normalization of the EBL optical depth, correspond-
ing to the 1σ (statistical) contours shown in Fig. 5.

τmeasured/τFR08 λmin−λmax λFλ(λmin)−λFλ(λmax)
µm nW m−2 sr−1

1.27+0.18
−0.15 1.2−5.5 14.8+2.1

−1.7−4.0+0.6
−0.5

1.34+0.19
−0.17 0.30−5.5 3.1 ± 0.4−4.2+0.6

−0.5

1.05+0.32
−0.28 1.2−17 12.2+3.7

−3.3−3.2+1.0
−0.8

Notes. The second column indicates the wavelength range where this
measurement is valid and the third column the corresponding flux den-
sities. The first line corresponds to the full data set. The second and
third lines indicate the value derived with smaller data sets focussed on
specific energy ranges. The systematic uncertainty on the measurements
listed in the first column is 0.25.

The detailed study of the dependence of the systematic uncer-
tainties on the wavelength, based e.g. on deviations from the
EBL template model, is beyond the scope of this paper but the
comparison of various modellings in a complementary redshift
band and wavelength range by The Fermi-LAT Collaboration
(Ackermann et al. 2012) supports our choice of template.

The contours lie in between the constraints derived with
galaxy counts and the direct measurements. A good agreement
with the VHE upper limit derived by Meyer et al. (2012) is also
found over the wavelength range covered, with a maximum dis-
crepancy between 1 and 2 µm smaller than the 1σ level. The
analysis performed enables a measurement of the COB peak flux
density of λFλ = 15.0+2.1

−1.8 ± 2.8sys nW m−2 sr−1 at 1.4 µm, where
the peak value and uncertainties are derived by scaling up the
FR08 EBL flux density by a factor α0. This value is compatible
with the previous constraints on the EBL flux density derived
with H.E.S.S. data by Aharonian et al. (2006c).

5. Summary and conclusion

The spectra of the brightest blazars detected by H.E.S.S. were in-
vestigated for an EBL absorption signature. Assuming intrinsic
spectral smoothness, the intrinsic spectral curvature was care-
fully disentangled from the EBL absorption effect. The EBL
imprint is detected at an 8.8σ level, which constitutes the first
measurement of the EBL optical depth using VHE γ-rays. The
EBL flux density has been evaluated over almost two decades
of wavelengths with a peak amplitude at 1.4 µm of λFλ =
15 ± 2sys ± 3sys nW m−2 sr−1, in between direct measurements
and lower limits derived with galaxy counts.

The low energy threshold achieved with the upgrade of the
H.E.S.S. array, H.E.S.S. II, will enable the observation of the
unabsorbed population of γ-rays and improve the constraints
on the intrinsic spectra and thus on the absorption feature. The
trough between the COB and the CIB will be characterized by
the Cherenkov Telescope Array (CTA, Actis et al. 2011) which
will probe energies above 50 TeV. Finally, the increasing size
of the sample of blazars detected at very high energies will im-
prove the constraints on the redshift dependence of the EBL and
establish a firm observational probe of the thermal history of the
Universe.
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Fig. 4. Spectrum of EBL and integrated light of galaxies. Filled plots show EBL by various direct photometry from space including
this study, and open plots shows the integrated light of galaxies by deep observations. Horizontal bars show the band widths of
wide-band data. Solid curve shows a model spectrum of the integrated light of galaxies based on the observed evolution of the
rest-frame K-band galaxy luminosity function up to redshift 4 (Domı́nguez et al. 2011), and broken curve shows a scaled version of
it in case of AKARI’s detection limit of point sources (mK = 19).

this correlation to the higher Galactic latitude regions in
our method. However, this assumption is obviously too
simple. For example, UV radiation field at high Galactic
latitude is weaker than that at Galactic plane (Seon et
al. 2011), therefore the PAH molecules are less excited at
high Galactic latitude than Galactic plane. This consid-
eration indicates that the gap around 3.3µm could not be
EBL origin but Galactic origin.
We obtained new spectral result of EBL at >4 µm, and

we cannot confirm the excess over the integrated light of
galaxies due to the large error bars. In addition, our result
contradicts with the high EBL brightness at 4.9 µm by
Arendt & Dwek (2003), but that data is highly uncertain
since it is not an observed value but an estimated value
from EBL at 1.25, 2.2, 3.5, and 100 µm.

5. Discussion

In Section 4, we found NIR EBL observed with
AKARI is fairly consistent with previous observations by
COBE/DIRBE and IRTS/NIRS. How can we understand
the excess of EBL from the integrated light of galaxies at
<4 µm?
At first we examine the possible origin in solar system.

If there is an isotropic component in ZL, it cannot be
subtracted by the correlation method in our study. One
candidate of isotropic ZL component is a dust shell contin-
gent on the Earth, but such a dense dust shell around the

Earth must be detected already, if it exists. An isotropic
diffuse background from the Oort cloud could be another
candidate. However, the very blue spectrum toward 1
µm cannot be generated by thermal emission from very
cold dust (<30 K) at the Oort cloud. Scattered sunlight
by the Oort cloud is also negligible because sunlight at
∼ 104− 105 au is very weak.
The second possibility is Galactic origin. There may ex-

ist numerous faint stars in the Galactic halo which causes
isotropic background. However, the negative detection of
extended halo in external galaxies was reported by Uemizu
et al. (1998). Furthermore, the observed excess emission,
∼23 mag/arcsec2 at H-band, can be easily detected for
the external galaxies with HST/NICMOS (Thompson et
al. 2007a; Thompson et al. 2007b), but no detection is
reported yet. These considerations support that the ob-
served excess emission is extragalactic origin.
Observation of TeV-γ blazar is another problem for

the extragalactic origin, since high level NIR EBL makes
intergalactic space opaque for TeV-γ photons (Dwek
et al. 2005b; Aharonian et al. 2006; Aharonian et al.
2007; Mazin & Raue 2007; Raue et al. 2009). However,
recent discoveries of high redshift (z> 0.2) TeV-γ blazar
(Ackermann et al. 2011) contradict with above standard
scenario, and it requires a new physical process. One idea
is that cosmic rays produced by brazers can cross cosmo-
logical distances, and interact with NIR photons relatively
close to the Earth, generating the secondary TeV γ-ray

Direct Measurements of COB & CIB

• Pioneer 10/11 measurements are consistent with the galaxy count 
lower limit. 

• But, recent AKARI measurement is consistent with IRTS. 

• Peak at near infrared?

Tsumura +’13
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Figure 9. Current measurements of the cosmic background (filled symbols) and the integrated brightness of galaxies (open symbols) at UV, optical, and near-IR
wavelengths. The cosmic background measurements include the UV upper limits (blue arrows) at 0.10 µm obtained from the Voyager/UVS (Edelstein et al. 2000)
and at 0.16 µm from the HST/STIS (Brown et al. 2000), the claimed detections at optical wavelengths using the HST/WFPC2 (Bernstein 2007, green squares) and
at near-IR wavelengths using the COBE/DIRBE [Gorjian et al. (2000), green diamonds; Wright (2001), purple diamonds; Cambrésy et al. (2001), blue diamonds;
Wright (2004), gray diamonds; the wavelengths of these measurements are slightly shifted relative to each other for clarity] and the IRTS (Matsumoto et al. 2005,
black circles). The red stars are the Pioneer/IPP results of this work, while the red solid line with arrows between 0.8 and 4 µm represents the HESS upper limits
(Aharonian et al. 2006). The integrated brightness of galaxies come from the HST/STIS measurements at UV (Gardner et al. 2000, squares), the HDF compilation
from UV to near-IR (Madau & Pozzetti 2000, triangles), and the Spitzer/IRAC measurements at near-IR wavelengths (Fazio et al. 2004, diamonds).

Table 4
COB Brightness and Mean DGL-to-100 µm Brightness Ratios a0

d

Wavelength COB Brightness DGL-to-100 µm Ratio a0
d

Band (µm) (bgu) (nW m−2 sr−1) (bgu [MJy sr−1]−1) (dimensionless)

BIPP 0.44 1.8 ± 0.9 7.9 ± 4.0 3.2 ± 0.1 (2.1 ± 0.1) ×10−3

RIPP 0.64 1.2 ± 0.9 7.7 ± 5.8 3.4 ± 0.1 (4.6 ± 0.1) ×10−3

a0
d (R)/a0

d (B) = 2.2, is consistent with the previous observations,
suggesting that ERE is also present in the diffuse ISM with the
lowest far-IR brightness. It confirms the finding of Gordon et al.
(1998), who reach the same conclusion from analysis of the IPP
data.

In summary, our results are in overall agreement with the
previous observations toward the denser dust regions. Further
study of this issue is beyond the scope of this work and will be
presented in a future paper.

5.2. Resolved Fraction of Cosmic Background

We compile the current measurements of the cosmic back-
ground and the integrated brightness of galaxies at ultraviolet
(UV), optical, and near-IR wavelengths in Figure 9. At UV
wavelengths, the upper limits of the cosmic background are ob-
tained from the analysis of the Voyager Ultraviolet Spectrome-
ter (UVS) data (Edelstein et al. 2000) and from the HST/Space
Telescope Imaging Spectrograph (STIS) observations (Brown
et al. 2000). They are a few times the integrated brightness of
galaxies measured by the HST/STIS (Gardner et al. 2000), still
leaving a large gap to be bridged. The situation in the near-IR

wavelength range is much more controversial. Matsumoto et al.
(2005) claim detection of the strong near-IR CIB based on the
Infrared Telescope in Space (IRTS) data. Their CIB values are
marginally consistent with the results from the COBE/DIRBE
measurements reported by several authors (Gorjian et al. 2000;
Wright 2001, 2004; Cambrésy et al. 2001) at 1.25, 2.2, and
3.3 µm. The integrated brightness of galaxies at these wave-
lengths, as well as at the optical UBVI bands, are derived from
the Hubble Deep Field (HDF) data set by Madau & Pozzetti
(2000). Those at the four bands of the Spitzer Infrared Array
Camera (IRAC) are presented by Fazio et al. (2004). Using the
HDF and the Subaru Deep Field (SDF) data, Totani et al. (2001)
obtain the consistent results with Madau & Pozzetti (2000).
They also find that 80%–90% of the total light from normal
galaxies has already been resolved in the SDF J and K bands,
based on a galaxy evolution model taking into account various
selection effects of observations. Therefore, the large CIB ex-
cess found by Matsumoto et al. (2005) should be attributed to
either some exotic radiation sources such as Population III stars
or the residual ZL in the IRTS data. Another constraint comes
from the High Energy Stereoscopic System (HESS) γ -ray ob-
servations of the blazars at z = 0.17–0.19 by Aharonian et al.
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CIBER Experiment at NIR region

• CIBER confirmed a large scale fluctuation reported by Spitzer & AKARI, 
which can not be explained galaxies (Zecmov+’14 Science). 

• A population other than galaxies may significantly contribute to 
CIB. 

• They will report the CIB absolute intensity measurement soon.
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Summary
• CGB at GeV band is composed of blazars, radio galaxies, 

and star-forming galaxies. 

• CGB at MeV band may be come from blazars or Seyferts. 

• Anisotropy measurement will distinguish these two 
scenarios. 

• CGB at TeV band is constrained by CGB at GeV band 
through cascade emission. 

• Need to check consistency with IceCube neutrino 
measurements.


