

Dark Matter Searches with the Fermi Large Area Telescope

Matthew Wood on behalf of the Fermi-LAT Collaboration

ma-

ray Space Telescope

Fifth Fermi Symposium Nagoya, Japan October 24th, 2014

- No evidence for DM in either direct or collider searches
- Latest upper limits from Super-CDMS and LUX disfavor DM interpretations of some previously reported low mass signals (COGENT,DAMA)
- ATLAS and CMS have reported limits on the existence of new SUSY particles using data collected from 7/8 TeV runs with ~20 fb⁻¹
- Current experimental status emphasizes the importance of indirect detection

Indirect Dark Matter Searches

Fermi-LAT DM Search Targets

DM Related Symposium Contributions

- New LAT collaboration measurement based on 4 years of P7REP data extends energy range to 100 MeV – 820 GeV
- Careful analysis of systematics including uncertainties from galactic foreground modeling
- A high-energy cutoff is significantly detected at ~250 GeV

DM Limits from the IGRB

Use two independent approaches (Halo Model and Power Spectrum) to estimate the cosmological flux multiplier \rightarrow theoretical uncertainty reduced from ~10³ to ~17

Conservative Limits: No background subtraction

Optimistic Limits: Assume that all galactic and extragalactic astrophysical contributions can be accurately modeled

Conservative limits

1000

 m_{χ} [GeV]

HM, Benchmark BGal substructure

HM, Minimal BGal. substructure

 $PS(min) \rightarrow PS(max)$

1000

 m_{χ} [GeV]

10

10⁻²¹

10⁻²²

10⁻²³

10-24

10⁻²⁵

 10^{-26}

10⁻²⁷

 $\langle \sigma v \rangle [cm^3 s^{-1}]$

 $b\overline{b}$

Segue 1, MAGIC

Preliminary

dSph, Fermi LAT

100

10⁻²⁷

10

Preliminary

100

 $\langle \sigma v \rangle [cm^3 s^-]$

GC Halo, HESS

 $\langle \sigma v \rangle_{\text{freeze-out}}$

10⁴

10⁴

Dwarf Spheroidal Galaxies

Dwarf spheroidal galaxies (dSphs) are highly **DM-dominated** systems orbiting the MW at typical distances of 25-100 kpc There are **18 dwarf galaxies** for which the astrophysical factor is well determined

P7REP Dwarf Stacking Analysis

Ackermann et al. PRD 89 042001 (2014), arXiv: 1310.0828

- Dwarf galaxies remain one of the cleanest targets for indirect DM searches
 - Low astrophysical backgrounds
 - Robust measurements of the astrophysical factors
- Most recent LAT collaboration based on four years of P7REP data (Ackermann+ 2014)
 - No detection (global significance of 1.4σ)
 - WIMPs with thermal relic cross section excluded for M < 10 GeV

See next talk by B. Anderson for results of new dwarf analysis with Pass 8

High Velocity Clouds: Smith Cloud

Drlica-Wagner et al. ApJ, 790, 24 (2014) [astro-ph/1405.1030]

- HVCs are coherent over-densities of HI gas covering 40% of the sky.
- Smith cloud is one of the best studied HVCs and may be bounded by a DM halo of ~10⁸ solar masses (Nichols & Bland-Hawthorn 09)
- No signal observed in LAT analysis of the Smith Cloud with 5.2 years of data, Pass7 reprocessed, 500 MeV – 500 GeV
- Assuming an NFW profile the derived limits are on the level of the thermal annihilation cross section for masses 20-30 GeV

Galaxy Clusters

- Galaxy clusters may be a compelling target if the boost factor from DM substructure is sufficiently large
- Recent theoretical work (Sánchez-Conde+ 2011, Sánchez-Conde & Prada 2014) has led to a reevaluation of cluster boost factors
 - Concentrations of low mass halos were overestimated in previous works
 - New models for c(M) relation predict typical boost factors of 30-50 for galaxy clusters and 1-2 for dwarfs
 - "Best" Cluster astrophysical factors with substructure boost are ~10x lower than astrophysical factors of the best MW dwarf galaxy candidates
- New LAT cluster stacking analysis is currently in development

Line Searches

- Only "smoking gun" signature but low expected signal amplitude relative to continuum searches
- Significant interest in gamma-ray lines circa 2012-2013 due to reports of a significant gamma-ray feature at ~133 GeV in LAT data (Bringmann+ 2012, Weniger 2012)
- LAT collaboration analysis with 3.7 years P7REP data (Ackermann+ 2013 PRD 88, 082002)
 - No globally significant lines ($< 2\sigma$)
 - Feature observed at 133 GeV with 3.3σ local significance
 - Width of 133 GeV feature found to be narrower than expected from LAT energy resolution
 - Feature at 133 GeV also observed in the Earth limb
- Significance of the 133 GeV feature has subsequently declined with 4+ years of data

See next talk by A. Albert and poster by R. Caputo for results from Pass 8 line analysis

Low-energy Line Search Albert+ JCAP 1410 (2014) 10, 023, astro-ph/1406.3430

- Search between 100 MeV up to 10 GeV (previously unexplored energy range!).
- **Data**: 5.2 years, P7 reprocessed Clean.
- Regions of Interest optimized for annihilation and decay.
 - → for decay, it constrains e.g. models of gravitino decay.
- At low energies, statistical uncertainties get very small (<1%)
 → systematics dominate
 - \rightarrow important to model them properly!

No globally significant lines detected: → flux upper limits in annihilation and decay ROIs

LAT data exclude μ vSSM gravitinos with masses larger than ~5 GeV or lifetimes smaller than ~10²⁸ s as DM candidates.

The Inner Galaxy

- The center of the Galactic dark matter halo is a promising target
 - Deep gravitational potential
 - Relatively nearby
- However, it is extremely complicated
 - Diffuse emission from cosmic-ray interactions with Galactic gas and dust
 - Densely populated by astrophysical sources (e.g., pulsars, SNR)
 - Detected in other wavelengths (e.g., radio, X-ray, TeV)
- Topic of much study, both inside and outside the collaboration...
 - Hooper & Linden (2011)
 - Boyarski et al. (2011)
 - Abazajian & Kaplinghat (2012)
 - Gordon & Macias (2013)
 - Abazajian et al. (2014)
 - Daylan et al. (2014)
 - etc.

GeV Excess in the Galactic Center

- Many recent papers report the detection of a diffuse gamma-ray excess in the Galactic Center (GCE) in LAT data; see e.g. Goodenough & Hooper 2009, Abazajian & Kaplinghat 2012, Gordon & Macias 2013, Daylan+ 2014, Abazajian+ 2014, Calore+ 2014
- A consistent picture has begun to emerge for the properties of the GCE
 - SED with peak at 1-3 GeV but with large systematic uncertainties on its precise shape (Abazajian+ 2014, Calore+ 2014)
 - Spherically symmetric spatial distribution extending at least 10-20 degrees from the GC (Daylan+ 2014, Calore+ 2014)
- LAT collaboration analysis finds that the spectrum of the excess emission varies widely depending on modeling of the interstellar emission (see talk by Simona Murgia)

4

2

٠

Galactic longitude (deg)

3.58

354

- Improved understanding of the systematic uncertainties in the galactic diffuse emission is needed before the nature of the GCE can be conclusively determined
 - Many uncertainties are unique to the Galactic Center
 - Impact of simplifications made in CR propagation models (e.g. GALPROP) are difficult to quantify
- Currently even diffuse emission models tuned to fit LAT data produce residuals along the galactic plane that are comparable in magnitude to the GCE
- Paths for future investigation
 - Radial distribution of gas along the line of sight
 - Non axisymmetric models of CR propagation (see talk by G. Johannesson)

- Multi-messenger and multi-wavelength data are an important ingredient in a comprehensive DM search strategy
 - Positrons
 - Antiprotons
 - Neutrinos
 - Radio
 - X-ray
- These data also provide an additional avenue for confirming or disproving gamma-ray signals

Positrons

- AMS-02 beautifully confirms the rise in the positron fraction first measured by PAMELA and Fermi-LAT
- However there are several challenges for a DM interpretation
 - Require Leptophilic models
 - Large non-thermal cross sections
 - Strong tension with gamma-ray constraints
- Many astrophysical models which can easily explain a rising fraction
 - Local pulsar sources
 - Acceleration of secondaries in SNR
- Sharp feature or edge would be needed to conclusively connect the rising positron fraction to DM

- Several papers report limits from antiprotons that exclude or are in strong tension with the GCE WIMP interpretation (Cirelli+ 2014, Bringmann+ 2014)
- **However**, there are large uncertainties in modeling both expected signal and background fluxes
 - Galactic Propagation model
 - Solar modulation
- For other choices of propagation models one can arrive at substantially weaker constraints (Hooper+ 2014)
- New measurements from AMS-02 may help reduce some of the current uncertainties on propagation modeling

Status of Indirect DM Searches

	Experimental Status	Discovery Potential	Astrophysical Uncertainties
Positrons	?	Low	High
Antiprotons	?	Low	High
Galactic Center	?	High	Medium
Dwarf Spheroidal Galaxies	No Signal	High	Low
Gamma-ray Lines	No Signal	Medium	Low
IGRB	No Signal	Low	High
Galaxy Clusters	No Signal	Medium	Medium

Future for Indirect Searches

- New Data
 - Fermi-LAT Pass 8 Data Release (mid-2015)
 - AMS Measurements of B/ C Ratio and Antiprotons
- New and Future
 Instruments
 - HESS II
 - Cherenkov Telescope Array
 - GAPS (Antideuteron Search)
 - DAMPE (Gamma-ray Space Telescope)
 - GAMMA-400 (Gamma-ray Space Telescope)

Pass 8: Improving the LAT Performance

- Pass 8 is a complete revision of the LAT event-level reconstruction and classification (see talk by P. Bruel for more details)
- Many improvements relative to Pass 7
 - Increased point-source sensitivity at all energies (30-40% at 1-10 GeV)
 - Large increase in acceptance at very low and very high energies (< 100 MeV and > 100 GeV)
 - PSF event classes (ala CTBCORE)
- Impact on dark matter searches
 - Energy Range: Extend reach to lower and higher masses
 - Angular Resolution: Better sensitivity to angular extension
 - Improved sensitivity for all DM channels

Complementarity of DM Searches

- This is an exciting period for LAT DM searches
 - Many targets are now probing the preferred phase space of thermal relic WIMP models
 - Conclusive evidence will probably require confirmation with multiple targets and/or messengers
- Interpretation of the GCE remains challenging
 - WIMP interpretation in mild tension with dwarf galaxy limits and antiproton measurements
 - Further progress will require more accurate models for the galactic diffuse emission and quantification of its uncertainties
- Pass 8 data release will provide a new window for future studies with LAT data
 - Improved performance and new capabilities
 - Reduced instrumental systematics
- Indirect Detection will continue to play a complementary role in the hunt for DM with direct and collider searches

- CTA observations of the Galactic Center will be an excellent probe for WIMP models with mass greater than 100 GeV
- Sensitivity of CTA complements the parameter space explored by the Fermi-LAT
- Higgsino models with WIMP masses near 1 TeV are a particular interesting part of the WIMP phase space from the standpoint of SUSY model scans (CMSSM, pMSSM)

Gamma-ray Space Telescope

133 GeV Feature in 4.4 year dataset

