

Fermi Bubbles

 Large structures of spectrally hard gamma-ray emission above 100MeV discovered in data from the Fermi Telescope. (Su et al. ApJ 724 2010 and Dobler et al. ApJ 717 2010)

Spectrum of the Fermi Bubbles

 Both, hadronic and leptonic mechanisms possible explanations for the measured spectrum (Ackermann et al. 2014 ApJ 793 64)

• **High energy gamma-ray data** (>500GeV) desirable to constrain the spectrum and hence to shed more light on *the origin* of the Fermi bubbles.

Spectrum of the Fermi Bubbles

 Both, hadronic and leptonic mechanisms possible explanations for the measured spectrum (Ackermann et al. 2014 ApJ 793 64)

- Hadronic Model:
 - CR interacting with Interstellar Matter in the bubble region
 - Experimental evidence (or lack of): very-hard gamma rays, neutrinos(Adrian-Martinez, S. et al. 2014)
 - Hard to explain microwave haze
- High energy gamma-ray data (>500GeV) desirable to constrain the spectrum and hence to shed more light on the origin of the Fermi bubbles.

Spectrum of the Fermi Bubbles

• Both, *hadronic and leptonic* mechanisms possible explanations for the measured spectrum (Ackermann et al. 2014 ApJ 793 64)

- Leptonic Model:
 - Electron population produce by outflow from the galactic center, or reacceleration inside the Bubbles
 - Can explain the microwave haze seen by WMap (Pietrobon et al. 2012; Dobler 2012) and Planck (Ade et al. 2013)

• **High energy gamma-ray data** (>500GeV) desirable to constrain the spectrum and hence to shed more light on the origin of the Fermi bubbles.

The HAWC Observatory

- Located at 4100 m a.s.l. in Mexico near Pico de Orizaba at 19°N
- Effective Area: ~22,000 m²
- Instantaneous field of view 2 sr; daily coverage of 2/3 of the sky.
- 300 Water Cherenkov Detectors (WCDs)
- Declinations from -26° to 64° (Part of Northern Fermi Bubble visible)
- · Inaugurated in March 2015, taking science data since 2013.

Data Set and Analysis

- **HAWC Pass 1** Data
 - *Partial* array: **108 -134 WCDs**
 - ~159 days live-time between August 2, 2013 to July 8, 2014
 - Live-time is stricter for this analysis compared to other HAWC Pass 1 analyses
- Studying Northern bubble region as defined by the Fermi Diffuse Model from 2013.
 - Declinations between -26° and 10°
 - · Caveat: the shape of the Fermi Bubbles at TeV energies (if they exist) is unknown

Data Set and Analysis

- **HAWC Pass 1** Data
 - *Partial* array: **108 -134 WCDs**
 - ~159 days live-time between August 2, 2013 to July 8, 2014
 - Live-time is stricter for this analysis compared to other HAWC Pass 1 analyses
- · Direct Integration method to estimate background
 - Integration time of *6 hours and 24 hours* used in this analysis. (For systematic studies)
- $R \le (1/3) (\Delta t) (15^{\circ} / 1 hr)$

• Region of interest used to estimate the background. Avoids contamination of known/bright sources to the background

HAWC Response to Fermi Bubble Spectrum

 Data points from Ackermann et al. 2014 ApJ 793 64

	N₀ (x10 ⁻⁷ GeV cm ⁻² s ⁻¹ sr ⁻¹)	α
Power Law	5.03	-2
Power Law (50 GeV - 450 Gev)	97.8	-2.75

 Expectation for HAWC Pass 1 during ~159 days using the spectral assumptions

• **f**: fraction of PMTs participating in a shower event.

HAWC Data: Challenges

- HAWC Excess:
 - 24hr DI shows a deficit at lower values of f
 - Deficit disappear due to the use of a lower DI value time (6hr).
 - Contamination of large scale anisotropy at lower values of f.

Using only the last five f bins

HAWC Data: Excess

- Looking at values of f between 0.37 and 1 only. Using 6hr DI
- Ratio of the excess in HAWC Pass 1 data and the expected excess for a power-law spectrum with index of -2

- No excess observed in the northern bubble region for high values of fraction of PMTs participating in a shower event.
- Calculate upper limit

Upper Limit of the northern Fermi Bubble

- Median energy obtained from HAWC Pass 1 simulations for a power law spectrum with index of -2
- Upper limit only uses statistical uncertainties. Need to include systematics

HAWC

High Altitude Water Cherenkov

Upper Limit of the northern Fermi Bubble

- Median energy obtained from HAWC Pass 1 simulations for a power law spectrum with index of -2
- Upper limit only uses statistical uncertainties. Need to include systematics

Summary

- Origin of Fermi Bubbles still uncertain. Information of high TeV gamma-rays will help constrain their origin.
- First study of the Northern Fermi Bubble region as detected by Fermi at GeV energies using data from HAWC Pass 1
- No excess observed in HAWC Pass 1 data in the range of 0.37<f<1.0. Lower range under observation.
- Work in progress:
 - Analyze lower smaller showers corresponding to smaller fraction of PMTs in the event.
 - Improve understanding of systematic uncertainties
 - Analysis of full detector data with improved reconstruction
- HAWC data size is increasing, improving the search sensitivity. Stay tuned.

HAWC Data: Work in Progress

HAWC Excess:

- Smaller value of 6hr DI does not use the whole sky to find the background -> No large scale anisotropy
- Use of *multipole fit* to the sky to *subtract large scale anisotropy*.
 - Working on simulations to make sure the subtraction in data works as expected
- Need to compare both 6hr and Multipole fit procedure