Resolving the High Energy Universe with Strong Gravitational Lensing

Anna Barnacka

Einstein Fellow at Harvard

Mentor: Margaret Geller

HST - 0.01"

Res
with

Mentor: Margaret Geller

X-Ray Jets - Lessons from Chandra
Increased x-ray emission by a factor of 50 from the HST-1 knot (Harris et al. 2006,2009) Core and HST-1: Separation ~ 60 pc

Flares from knots along the jets

M87 Gravitationally Lensed?

Deflection angle:

$$
\alpha=\frac{4 G M(r)}{c^{2}} \frac{1}{r}
$$

Images separation - a few arcseconds time delay magnification ratio

M87 as a Toy Model

- $\mathrm{zs}=1, \mathrm{z} \mid=0.6$
- Einstein radius ~ $2.2 \mathrm{kpc}\left(0.45^{\prime \prime}\right)$

60 pc ~ 0.01 " $\sim 3 \%$ Einstein radius

- Differences between the core and the HST-1:

days
 de in magnification ratio: ~ 0.2

Barnacka, A., Geller M. Dell'Antonio, I., \& Benbow, W. (June 2014, ApJ)

Temporal Resolution at Gamma Rays

Lensed Gamma-Ray Jets: B2 0218+35

> Source $z=0.944$, Lens $z=0.6847$

Radio Time Delay 10.5 ± 0.5 days

Magnification Ratio
3.62 ± 0.06
1.687 GHz, Patnaik et al. (1992)

Gamma-Ray Time Delay

Time Delay $=11.38 \pm 0.13$ days (Barnacka et al., submitted)
Time Delay $=11.46 \pm 0.16$ days (Cheung et al. 2014)

Lens Modeling

The Hubble Parameter Space

The Origin of Gamma-ray Flare

Gamma-ray flare occurred 51 ± 8 pc
from the 15 GHz core toward the central engine.
~3 sigma effect
(Barnacka et al. submitted)

Summary

- Strong Lensing:

- Powerful Tool to Resolve H gh Energy Universe
- Effective Spatial Resolution ~1 =miliarcsecond -improvement x 10,000,000

Backup Slides

Flare 2

Gamma-ray Flare 2: Time Delays

Time delay: 9.75 ± 0.5 or 11.0 ± 0.25 days

Spatial Origin of Flare 2

Gamma-ray Flare 2: The Maximum Peak Method

Application of strong lensing

Barnacka, A., Geller, M., Dell'Antonio, I., \& Benbow, W. (June 2014, ApJ)

Ambiguity of Gamma-Ray Origin

Right Ascension (hours)

Spatial Origin of Gamma-Ray Flares

Credit: MAGIC and VERTIAS and H.E.S.S. Collaborations (2009)

