

Home

Home
Announcements
Venue
Travelling to Málaga

Home

Blazars, the most extreme variety of active galactic nuclei (AGN) and the most luminous long-lived individual objects in the universe, continue to pose major astrophysical puzzles. This international conference will be devoted to recent progress in observational and theoretical aspects of blazars and advances in our understanding of the "big picture" of the blazar phenomenon.

Blazars radiate across the electromagnetic spectrum from radio to qamma-rav frequencies. Observations of

Topics to be discussed include:

- Jet formation, dynamics, and astrometry
- Probes of blazar jets with the finest angular resolution through EHT, mm-VLBI, and RadioAstron observations
- Multi-wavelength studies of blazars from theory and observations
- Magnetic fields and polarization
- Non-blazar AGN jets

驚CSIC

BOSTON
UNIVERSITY

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS

The connection between the radio jet and the Y -ray emission in the radio galaxy 3C120 and the blazar CTA102

J. L. Gómez, C. Casadio,

Instituto de Astrofísica de Andalucia (CSIC)
S. G. Jorstad, A. P. Marscher,

Boston University
P. Grandi

Istituto Nazionade di Astrofisica-IASFBO

+ co-authors

THE CONNECTION BETWEEN THE RADIO JET AND GAMMA-RAY EMISSION IN 3C 120

We have analyzed Fermi-LAT data collected between August 2008 and August 2014.

The light curve in the $100 \mathrm{MeV}-100 \mathrm{GeV}$ band and a bin size of 3 months shows four detections with $\mathrm{TS}>10$.

A FSRQ, PKS $0423+05$, is located at ~ 1.6 degrees from 3C120. These sources are detected in different periods suggesting negligible mutual contamination.

The light curve with energy $>500 \mathrm{MeV}$, with a PSF smaller than the separation between the two sources, confirms our detections and negligible contamination.

Detections in the energy range $\mathbf{5 0 0} \mathbf{~ M e V} \mathbf{- 1 0 0} \mathbf{~ G e V}$ with a bin size of $\mathbf{1 5}$ days

MJD	Date	Flux	Err	TS
$56264-56279$	2012 Dec 03-2012 Dec 18	1.41	0.60	10.6
$56549-56564$	2013 Sep 14-2013 Sep 29	1.65	0.54	21.6
$56564-56579$	2013 Sep 29-2013 Oct 14	1.31	0.53	13.3
$56774-56789$	2014 Apr 27-2014 May 12	1.15	0.52	10.4
$56819-56834$	2014 Jun 11-2014 Jun 26	1.47	0.59	13.8
$56924-56939$	2014 Sep 24-2014 Oct 09	2.52	0.86	18.4

Casadio et al. [2015a]

THE CONNECTION BETWEEN THE RADIO JET AND GAMMA-RAY EMISSION IN 3C 120

VLBA-BU-BLAZAR
VLBA-BU-BLAZAR
21 epochs between January 2012 and May 2014.

THE CONNECTION BETWEEN THE RADIO JET AND GAMMA-RAY EMISSION IN 3C 120

VLBA-BU-BLAZAR
21 epochs between January 2012 and May 2014.

THE CONNECTION BETWEEN THE RADIO JET AND GAMMA-RAY EMISSION IN 3C 120

VLBA-BU-BLAZAR
21 epochs between January 2012 and May 2014.
γ-ray detections are always associated with the ejection of a new component.

VLBA-BU-BLAZAR

VLBA-BU-BLAZAR

Relative Right Ascension (mas)

Casadio et al. [2015a]

THE CONNECTION BETWEEN THE RADIO JET AND GAMMA-RAY EMISSION IN 3C 120

VLBA-BU-BLAZAR

21 epochs between January 2012 and May 2014.
γ-ray detections are always associated with the ejection of a new component.

MOJAVE 15 GHz VLBA.
46 epochs between June 2008 and August 2013.

VLBA-BU-BLAZAR

21 epochs between January 2012 and May 2014.
γ-ray detections are always associated with the ejection of a new component.

However, as seen for component E4, not all ejections lead to enhanced γ-ray emission.

MOJAVE 15 GHz VLBA.
46 epochs between June 2008 and August 2013.

THE CONNECTION BETWEEN THE RADIO JET AND GAMMA-RAY EMISSION IN 3C 120

Components show a progressive decrease in apparent velocity in a time span of ~ 6.4 years, about half of the precessing period of 12.3 yrs estimated by Caproni \& Abraham (2004).

Furthermore, components are ejected at different position angles, suggesting that the variation in apparent velocity is due to a change in viewing angle.

VLBA 15 GHz			
Name	T_{ej} (year)	μ $(\mathrm{mas} / \mathrm{yr})$	β_{app}
E0	2007.29 ± 0.06	2.81 ± 0.05	6.21 ± 0.11
E1	2008.01 ± 0.02	2.76 ± 0.05	6.10 ± 0.11
E4	2008.82 ± 0.04	2.35 ± 0.05	5.19 ± 0.11
E5	2009.42 ± 0.02	2.60 ± 0.06	5.75 ± 0.13
E6	2009.85 ± 0.03	2.56 ± 0.05	5.66 ± 0.11
E8	2010.45 ± 0.02	2.20 ± 0.03	4.86 ± 0.07
E9	2011.23 ± 0.04	2.32 ± 0.09	5.12 ± 0.19
	VLBA 43 GHz		
d11	2013.03 ± 0.03	1.91 ± 0.09	4.22 ± 0.22
d12	2013.67 ± 0.02	2.1 ± 0.2	4.7 ± 0.3

Casadio et al. [2015a)

THE CONNECTION BETWEEN THE RADIO JET AND GAMMA-RAY EMISSION IN 3C 120

Components show a progressive decrease in apparent velocity in a time span of ~ 6.4 years, about half of the precessing period of 12.3 yrs estimated by Caproni \& Abraham (2004).

Furthermore, components are ejected at different position angles, suggesting that the variation in apparent velocity is due to a change in viewing angle.

From the observed apparent velocities, and minimizing the required reorientation of the jet, we estimate $\Gamma=6.3$, and a change in viewing angle from $\theta=9.2$ (component EO) to $\theta=3.6$ degrees, when component d11 was ejected and a γ-ray emission is detected. This implies a change in $\delta \sim 6.2$ (E0) to $\delta \sim 10.9$ (d11), leading to enhanced γ-ray emission.
γ-rays are observed when a new component pass through the core and it is oriented at a viewing angle of $\leqslant 4$ degrees.

Casadio et al. [2015a]

Caproni \& Abraham (2004)

Multi-wavelength observations have established a delay of ~ 66 days between X-ray dips and the ejection of new superluminal components (Marscher et al. 2002; Chatterjee et al. 2009).

For a mean $\beta_{\text {app }} \sim 2$ mas $/ \mathrm{yr}$, this gives a separation between the BH and mm-VLBI core of $\sim 0.24 \mathrm{pc}$, or $\sim 3.8 \mathrm{pc}$ deprojected with $\theta=3.6 \mathrm{deg}$.

First γ-ray takes place 34 days ($\sim 1.9 \mathrm{pc}$ deprojected) before component d11 crosses the core, or about half the BH -core distance.

Second γ-ray takes place 33 days ($\sim 2 \mathrm{pc}$) after component d12 crosses the core.

Hence, γ-ray detections took place near the core, parsecs away from the $B H$.

Estimated size for the BLR is $\sim 0.03 \mathrm{pc}$ (Grier et al. 2013; Kollatschny et al. 2014). This limits the amount of external photons from the BLR, suggesting SSC as the γ-ray emission mechanism, in agreement with other estimates (e.g., Tanaka et al. 2015).

De-projected distances

The blazar CTA102

A MWL STUDY OF THE BLAZAR CTA 102 DURING A GAMMA-RAY FLARE IN 2012

VLBA-BU-BLAZAR

80 epochs between June 2007 and June 2014.

Four main superluminal components and two stationary features.

Kinematics of Moving Jet Features				
Name	N.Epoch	μ $\left(\mathrm{mas} \mathrm{yr}^{-1}\right)$	β_{app} (c)	$T_{e j}$ $($ year $)$
N1	26	0.27 ± 0.01	14.9 ± 0.2	2009.12 ± 0.02
N2	18	0.35 ± 0.01	19.4 ± 0.8	2000.65 ± 0.07
N3	10	0.49 ± 0.03	26.9 ± 1.8	2011.96 ± 0.07
N4	6	0.21 ± 0.02	11.3 ± 1.2	2012.49 ± 0.11

VLBA-BU-BLAZAR

80 epochs between June 2007 and June 2014.

Four main superluminal components and two stationary features.

Main γ-ray outburst associated with a big core flare and ejection of N 4 .

VLBA-BU-BLAZAR

80 epochs between June 2007 and June 2014.

Four main superluminal components and two stationary features.

Main γ-ray outburst associated with a big core flare and ejection of N4.

Second orphan γ-ray flare may be associated with the interaction of N4 and C1

Strongest component N1 has no associated γ ray flare.

Relative Right Ascension (mas)

A MWL STUDY OF THE BLAZAR CTA 102 DURING A GAMMA-RAY FLARE IN 2012

Estimated parameters for the main 4 components in the jet show a progressive increase in $\delta_{\text {var }}$ with time due to a reorientation of the jet towards the observer.

Component N4, associated with the main γ ray flare, has the largest $\delta_{\text {var }}$ ever observed in CTA102, at $\theta_{\text {var }}=1.2$ deg.

Progressive reorientation of the jet is also seen in the mm-wave EVPAs, followed by a faster rotation in mm-VLBI components after the γ-ray flare.

Physical Parameters of Moving Jet Features

Name	$\Delta t_{\text {var }}$ $($ year $)$	$a_{\text {max }}{ }^{\text {a }}$ $($ mas $)$	$\delta_{\text {var }}$	$\theta_{\text {var }}$ $\left({ }^{\circ}\right)$	$\Gamma_{\text {var }}$
N1	0.70	0.14	14.6	3.9	14.9
N2	1.12	0.33	22.4	2.5	19.6
N3	0.28	0.09	26.1	2.2	26.2
N4	0.20	0.08	30.3	1.2	17.3

Opacity core-shifts have located the mm-VLBI at a deprojected distance of $\sim 8 \mathrm{pc}$ from the BH (Fromm et al. 2015).
Main γ-ray flare in 2012.73 occurred 47 to 127 days after component N4 crossed the mm-VLBI core in 2012.49 ± 0.11, or at a de-projected distance of $>5 \mathrm{pc}$ from the core.

Hence, the γ-ray outburst took place more than $\mathbf{1 2 ~ p c ~ f r o m ~ t h e ~ B H . ~}$

At this location there should be no contribution of photons from the disk, BLR, or dusty torus, suggesting SSC as the γ-ray production mechanism.

De-projected distances

Casadio et al. [2015b]

A MWL STUDY OF THE BLAZAR CTA 102 DURING A GAMMA-RAY FLARE IN 2012

Opacity core-shifts have located the mm-VLBI at a deprojected distance of $\sim 8 \mathrm{pc}$ from the BH (Fromm et al. 2015).
Main γ-ray flare in 2012.73 occurred 47 to 127 days after component N4 crossed the mm-VLBI core in 2012.49 ± 0.11, or at a de-projected distance of $>5 \mathrm{pc}$ from the core.

Hence, the γ-ray outburst took place more than $\mathbf{1 2 ~ p c ~ f r o m ~ t h e ~ B H . ~}$

At this location there should be no contribution of photons from the disk, BLR, or dusty torus, suggesting SSC as the γ-ray production mechanism.

Only the main γ-ray flare displays a shift in the peak to higher frequencies, as expected for an increase in the Doppler factor.

The ratio of γ-ray to infrared (synchrotron) luminosity is $\leqslant 10$, consistent with the SSC process.

De-projected distances

SUMMARY

- Despite representing very different classes of AGN, the radio galaxy 3C120 and the blazar CTA102 have very similar properties during γ-ray events.
- The (MWL) γ-ray flares are associated with the passage of a new superluminal component through the mm-VLBI core.
- But not all ejections of new knots lead to γ-ray events. γ-ray events occurred only when the new components are moving in a direction closer to our line of sight.
- We locate the γ-ray dissipation zone a short distance from the mmVLBI core, but parsecs away from the central black hole and BLR, suggesting SSC as the mechanism for γ-ray production.

