

Simultaneous long-term monitoring of LS I $+ 61^{\circ}303$ by OVRO and *Fermi*-LAT

Frédéric Jaron¹, Maria Massi², Sebastian Kiehlmann³, Talvikki Hovatta⁴

¹Institute of Geodesy and Geoinformation, University of Bonn, Nussallee 17, 53115 Bonn, Germany, fjaron@mpifr-bonn.mpg.de

²Max Planck Institute for Radio Astronomie, Auf dem Hügel 69, D-53121 Bonn, Germany
³Owens Valley Radio Observatory, California Institute of Technology, Pasadena, CA 91125, USA
⁴Finnish Center for Astronomy with ESO (FINCA), University of Turku, FI-20014, Turku, Finland

Condensed summary

Long-term phase-offset between radio and GeV emission from X-ray binary LS I $+61^{\circ}303$ explained in a scenario of a precessing jet.

1. Context

Previous long-term monitorings of the γ -rayloud X-ray binary LS I +61°303 have revealed the presence of two features in the power spectra at periods $P_1 \approx 26.5$ days and $P_2 \approx 26.9$ days. The interference of the two periods results in a long-term modulation of ~ 4.5 years. After nine years of simultaneous monitoring of LS I +61°303 by the Owens Valley Radio Observatory and the *Fermi*-LAT, two cycles of the long-term period are now available.

3. Timing analysis

Lomb-Scargle timing analysis results.

2. The light curves

Fig. 1 Gamma-ray and radio light curves of LS I $+61^{\circ}303$ resulting from long-term monitoring by *Fermi*-LAT and OVRO, respectively.

5. Beating and phase offset

The sum of two sine functions,

 $\sin \omega_1 t + \sin \omega_2 t = 2 \sin \left(\frac{\omega_1 + \omega_2}{2} t \right) \cos \left(\frac{\omega_1 - \omega_2}{2} t \right),$

gives a beating with beat frequency $\omega_{\text{beat}} = \omega_1 - \omega_2$. A phase-shift δ of the sine wave oscillating at ω_2

Fig. 4 OVRO radio data Fig. 5 Fermi-LAT GeV folded on the found peri- data folded on the found periodicities. odicities. ϕ_0 $P_2 = 26.926 \,\mathrm{d}$ Fermi-LAT 0.35 ± 0.02 1.09OVRO 0.55 ± 0.02 2.40 $P_{\text{long}} = 1659 \,\mathrm{d}$ *Fermi*-LAT 0.95 ± 0.02 2.12OVRO 0.69 ± 0.02 1.17

Fig. 6 Sketch of a scenario in which the GeV emission is produced upstream (i.e., earlier in time) in the jet as compared to the 15 GHz radio emission. Left: At time t_1 the GeV emission is emitted into the direction of the line of sight. Right: At time t_2 this population of electrons has cooled to and emits at radio at 15 GHz. The new population of electrons, now emitting at GeV energies, are ejected into a different direction because of jet precession. The difference between t_1 and t_2 translates to a difference in phase when folding the radio and the GeV data on the precession period.

results in

Reference

 $\sin \omega_1 t + \sin (\omega_2 t + \delta)$ = $2 \sin \left(\frac{\omega_1 + \omega_2}{2} t + \frac{\delta}{2} \right) \cos \left(\frac{\omega_1 - \omega_2}{2} t - \frac{\delta}{2} \right),$

the phase shift δ affecting the lower frequency ω_2 has the effect of phase-shifting the slowly oscillating cosine term by $-\delta/2$, i.e., in the opposite direction. The envelope, however, which has a frequency of $\omega_{\text{beat}} = 2\omega_{\text{cos}}$ is shifted by $-\delta$, which means it experiences the same phase shift as the sine wave at ν_2 but in the opposite direction.

Table 1 Phase origin ϕ_0 resulting from fitting sine functions of the form $f(\phi) = A \sin (2\pi(\phi - \phi_0)) + B$ to the folded radio and GeV data.

Jaron, F., Massi, M., Kiehlmann, S., & Hovatta, T., 2018, MNRAS, 478, 440, doi:10.1093/mnras/sty1037

Acknowledgements

This work has made use of public *Fermi* data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA Goddard Space Flight Center. The OVRO 40 m Telescope Monitoring Program is supported by NASA under awards NNX08AW31G, NNX11A043G, NNX14AQ89G, and by the NSF under awards AST-0808050, AST-1109911.