

Fermi LAT Data Exploration

Aous Abdo <<u>Aous.Abdo@nrl.navy.mil</u>> National Academy of Sciences & Naval Research Laboratory Washington DC

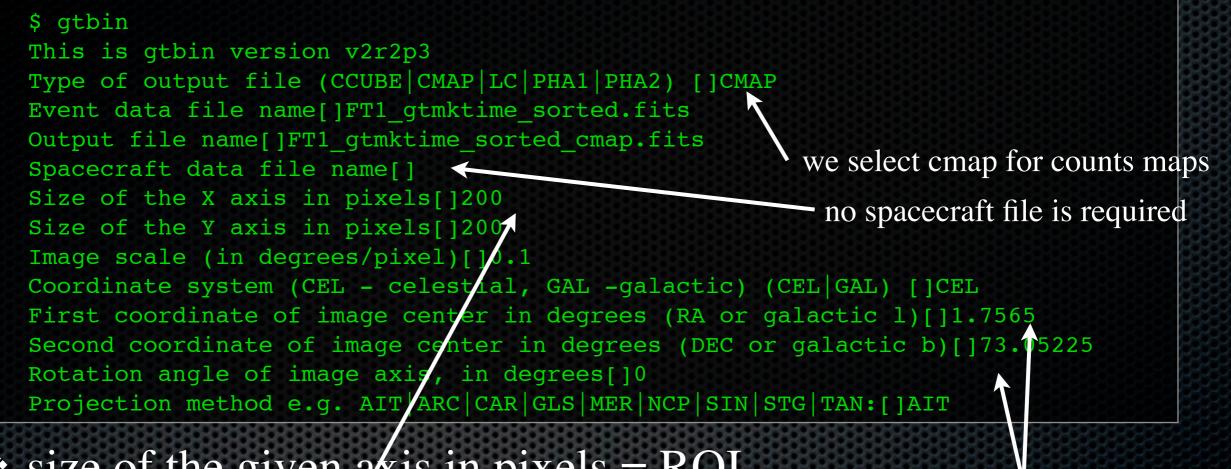
Overview

* In this part we will learn how to explore the LAT data:

- 1. We will learn how to make counts maps with gtbin
 - Overlay 1FGL source catalogues
- 2. Make light curves
- 3. Obtain energy spectra
- 4. Look at the exposure maps

Counts Maps

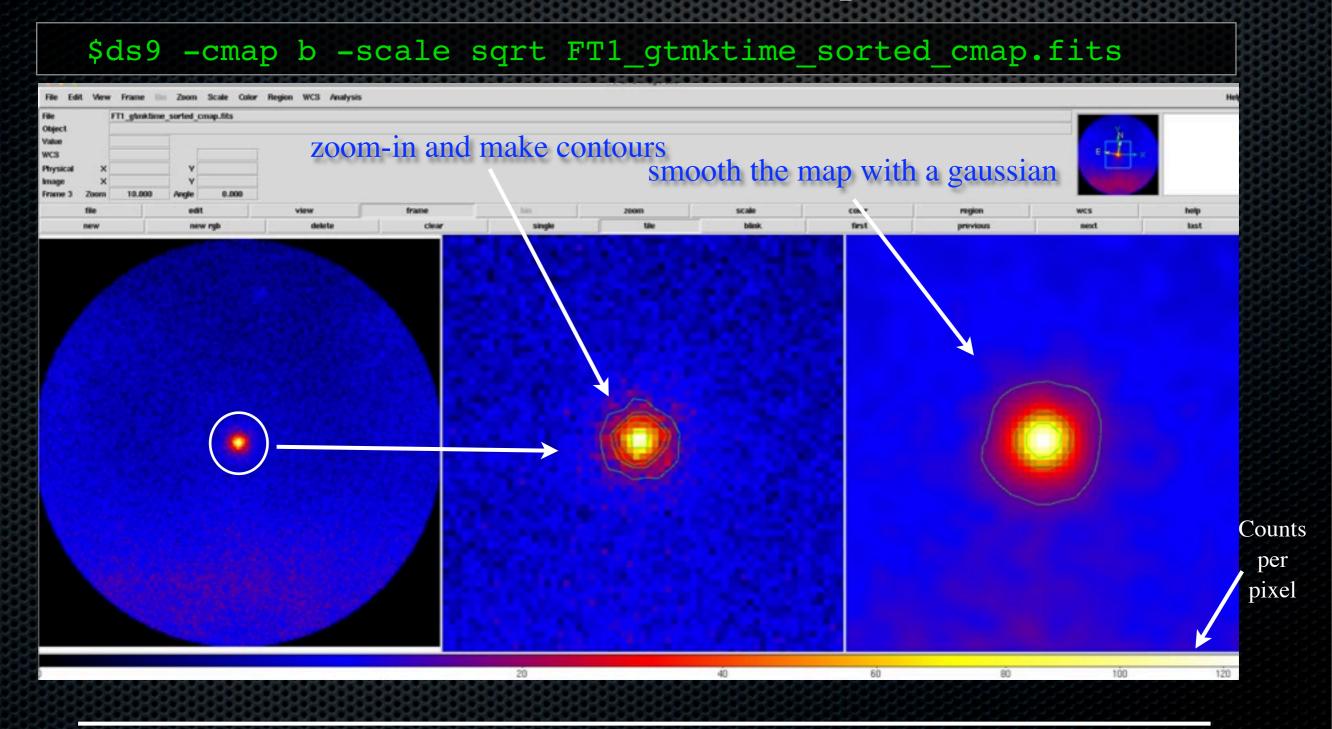
- Now that we have a file that is ready to be analyzed the first thing we will do is to look at the region that we extracted.
- * This is a good practice in all types of analyses since it gives you an idea about sources in the region and how complex the region is.
- * We will use the Science Tool gtbin to do this.



* gtbin can be used with the LAT data to:

- Make raw counts maps
- Make quick-look light curve
- Obtain spectra
- * gtbin products should be considered as a first step and to get a rough idea about the source in question.
- This is true since gtbin does <u>NOT</u> take into account things like
 - Exposure correction
 - Instrument response

Counts Maps With gtbin

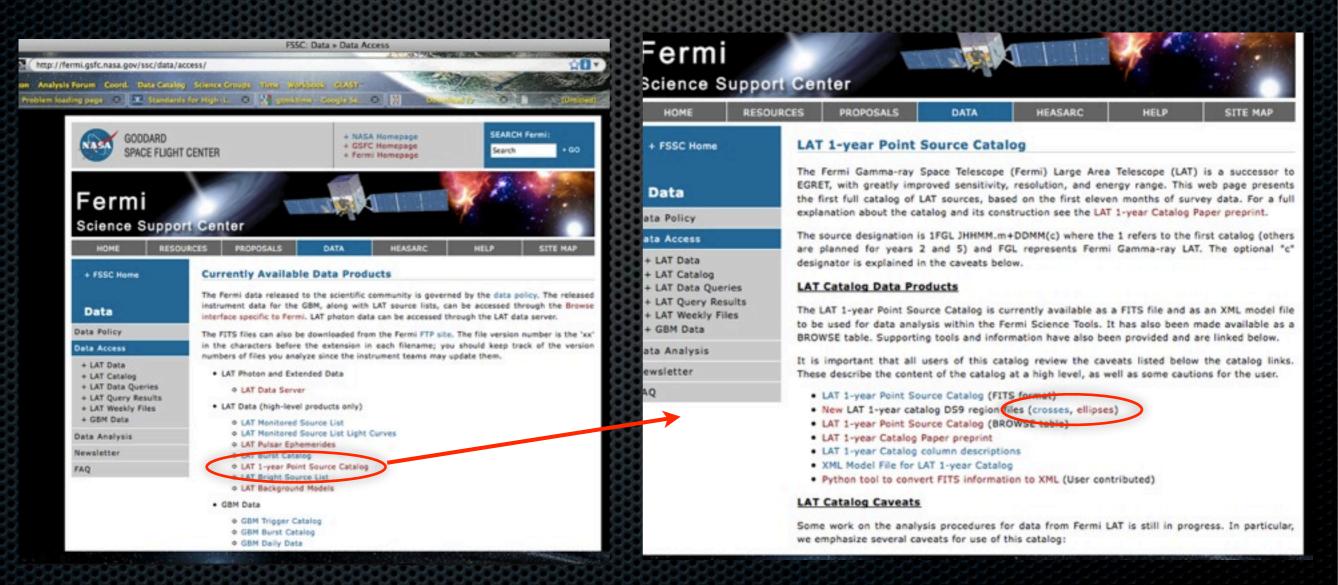

- * size of the given axis in pixels = ROI center of our cmap is the position diamater x Image scale of our source
- We wanted to bin out image in 0.1 degrees/pixel so we selected (2*10)/0.1 = 200 for the sizes of our axes

Aous Abdo

Fermi LAT Data Exploration

Counts Maps With gtbin

* Now we use ds9 to view the counts map file

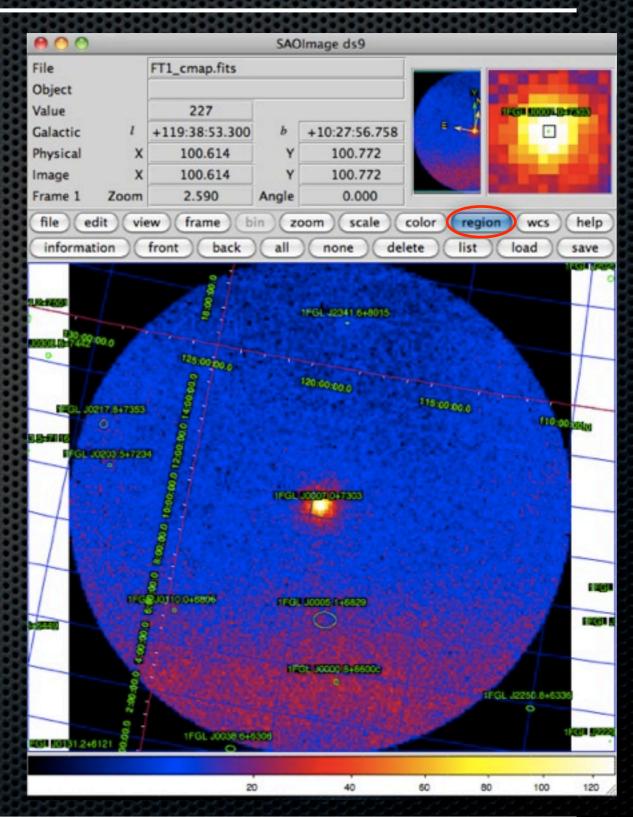


Aous Abdo

Thursday, May 13, 2010 (DOY 133)

Overlaying 1FGL Sources

- One can overlay a number of catalogues on the counts map.
- We will overlay the 1FGL catalogue (gll_psc_v02_ellipses.reg) sources on our image.
- <<u>http://fermi.gsfc.nasa.gov/ssc/data/access/lat/></u>



Aous Abdo

Fermi LAT Data Exploration

Overlaying 1FGL Sources

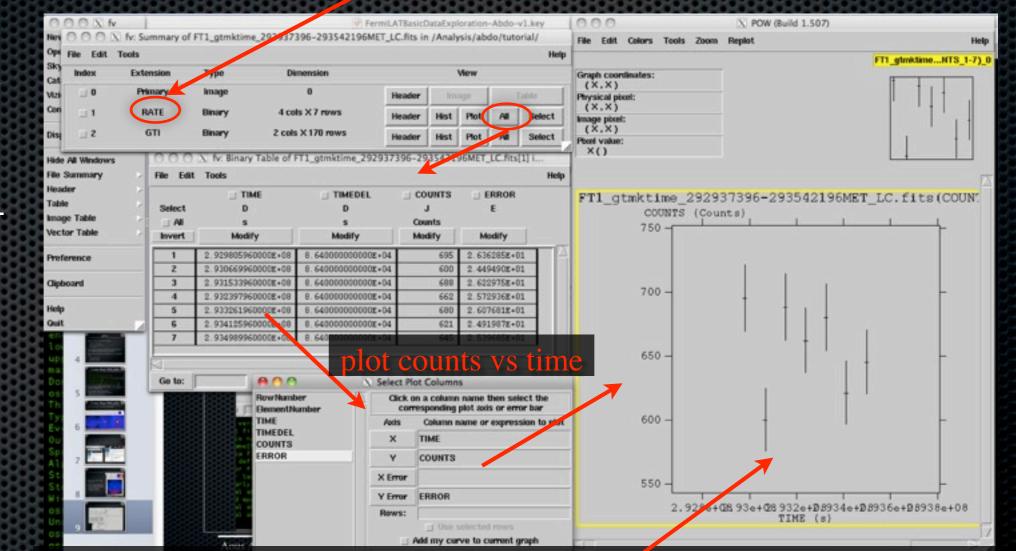
- Not many sources in the ROI (~6 sources)
- Relatively uncomplicated region. Will be easier and faster to to run the likelihood analysis

Light Curves With gtbin

- * We will make a quick light curve using gtbin.
- We will look at the light curve of the CTA1 pulsar during the last week of the observation file we downloaded.
- We will bin the data in 1-day time bins \$ gtbin This is gtbin version ScienceTools-v9r15p2-fssc-2009055 Type of output file (CCUBE|CMAP|LC|PHA1|PHA2) []LC Event data file name[] FT1_gtmktime_292937396-293542196MET.fits Output file name[]FT1_gtmktime_292937396-293542196MET_LC.fits Spacecraft data file name[]L100422151847E0D2F37E30_SC00.fits Algorithm for defining time bins (FILE|LIN|SNR) []LIN Start value for first time bin in MET[] 292937396 Stop value for last time bin in MET[]293542196 Width of linearly uniform time bins in seconds[]86400

seconds in 1 day

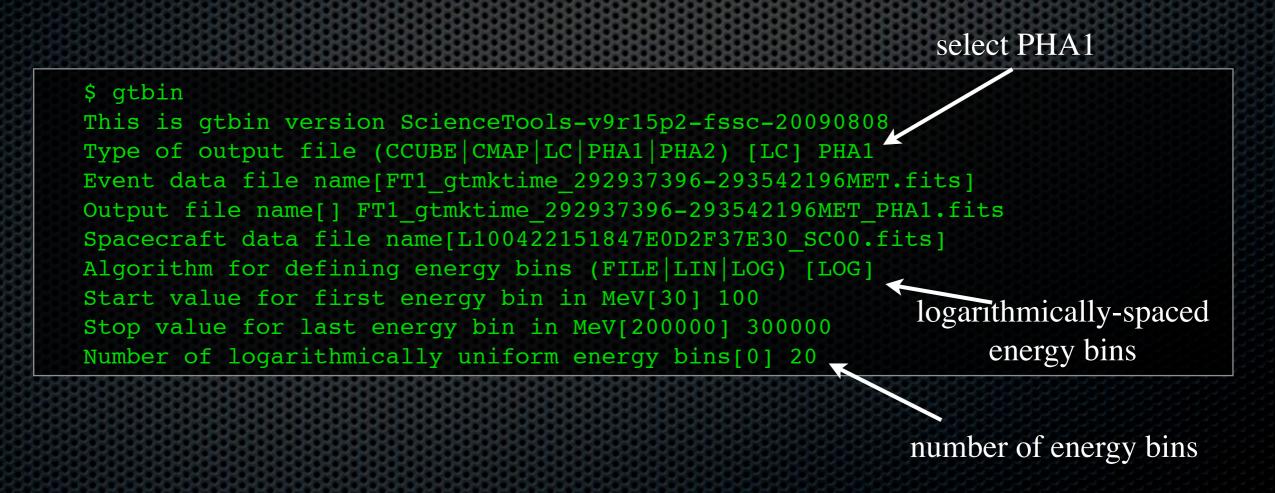
Light Curves With gtbin


* The output file has the extension "RATE" which gives counts as a function of time

To make a plot of the light curve click on the "All" button under the RATE extension

TIME goes on the x-axis

 \clubsuit COUNTS on the y


And ERROR on the y-axis error

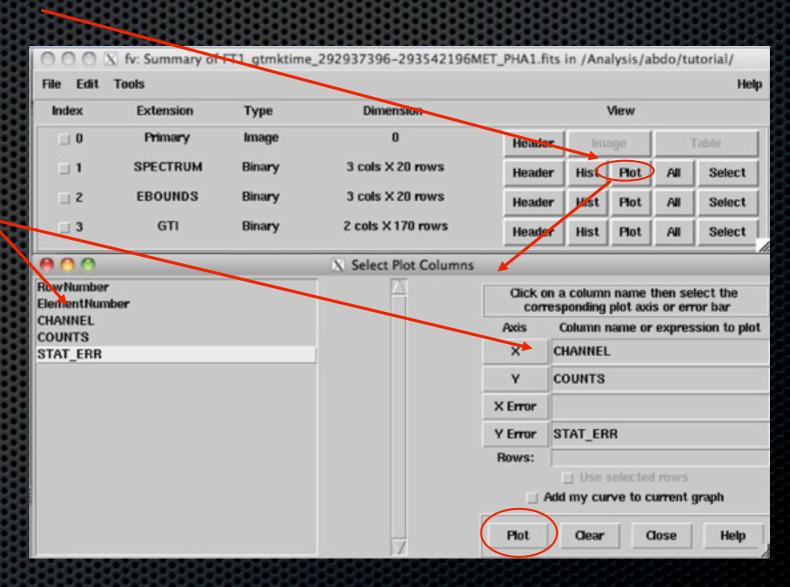
remember this does not have exposure correction and instrument response

Energy Spectra With gtbin

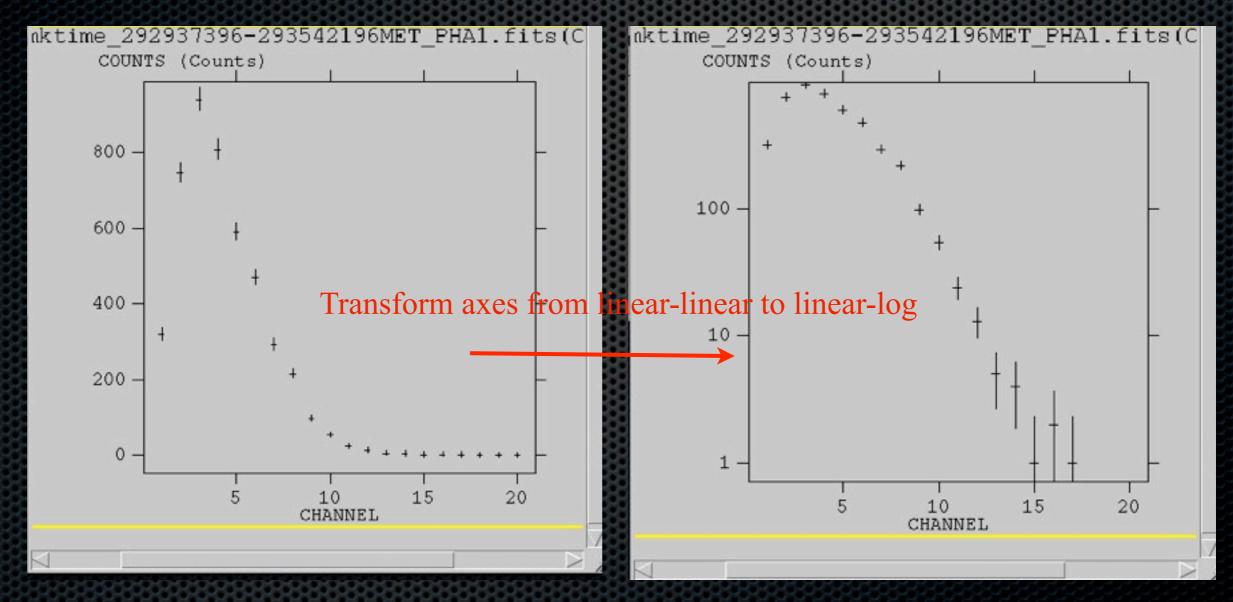
- * We will look at the spectra of CTA1 using gtbin
- stbin can produce:
 - Energy spectrum binned in energy (PHA1)
 - Energy spectra binned in energy for a series of time ranges (PHA2)

Energy Spectra with gtbin

- ✤ Output file:
- SPECTRUM extension:
 - CHANNEL : Energy bin number
 - COUNTS: # of photons in that bin
 - ◆ STAT_ERR: statistical error


EBOUNDS extension:

Minimum and maximum energy for energy bin


e Edit	Tools						Help	Fre
Index Extension Type Dimensio				n View				-
0	0 Primary Image		0) Hea		lmago	Table	
SPECTRUM Binary 3 cols X 20			rows	Header	Hist Plot A	Select	E	
🗆 2	EBOUND	S Binary	3 cols X 20	rows	Header	Hist Plot A	Select	F
🗆 3	GTI	Binary	2 cols X 170	rows	Header	Hist Plot A	Select	
1				1000				
00	Lange and the second	Table of FT1_gt	tmktim 2929	CONTRACTOR OF CASE	100000	Table of 1_gtr	nktime_29293	
e Edit	Tools		Help	File Edit	Tools			
	_ CHANNEL	COUNTS	STAT_ERR		_ CHANNEL	E_MIN	_ E_MAX	
Select	1	J	E	Select		E	E	
	Martific	Counts	Madifie	_ All Invert	Modify	keV Modify	keV Modify	1
nvert	Modify	Modify	Modify	Invert	Moulty			
1	1	320	1.788854E+01	1	1	1.000000E+05	1.492300E+0	
2	2	748	2.734959E+01	2	2	1.492300E+05	2.226958E+0	
3	3	941	3.067572E+01	3	3	2.226958£+05	3.3232908+0	
4	4	808	2.842534E+01	4	4	3.323290E+05	4.959344E+0	-
5	5	592	2.433105E+01	5	5	4.959344E+05	7.400828E+0	_
6	6	471	2.170253E+01	6	6	7.400828E+05	1.104425E+0	_
7	7	293	1.711724E+01	7	7	1.104425E+06	1.648134E+0	16
8	8	216	1.469694E+01	8	8	1.648134E+06	2.459510E+0	16
9	9	98	9.899495E+00	9	9	2.459510E+06	3.670325E+0	16
10	10	54	7.348469E+00	10	10	3.670325E+06	5.477226E+0	16
11	11	24	4.898980E+00	11	11	5.477226E+06	8.173662E+0	16
12	12	13	3.605551E+00	12	12	8.173662E+06	1.219755E+0	17
13	13	5	2.397916E+00	13	13	1.219755E+07	1.820241E+0	17
14	14	4	2.179450E+00	14	14	1.820241E+07	2.716345E+0	17
15	15	1	1.322876E+00	15	15	2.716345E+07	4.053600E+0	17
16	16	2	1.658312E+00	16	16	4.053600E+07	6.049187E+0	17
17	17	1	1.322876E+00	17	17	6.049187E+07	9.027200E+0	17
18	18	0	8.660254E-01	18	18	9.027200E+07	1.347129E+0	18
19	19	0	8.660254E-01	19	19	1.347129E+08	2.010320E+0	18
20	20	0	8.660254E-01	20	20	2.010320E+08	3.000000E+0	18
	10						2 A	

Energy Spectra with gtbin

- To make a plot of the energy spectrum use the plot button under the SPECTRUM extension
- CHANNEL goes on the x-axis
- ✤ COUNTS on the y
- And STAT_ERR on the y-axis error

Energy Spectra with gtbin

The spectrum measured takes into account all the sources in the 10 degree region.

Aous Abdo

Fermi LAT Data Exploration

Thursday, May 13, 2010 (DOY 133)

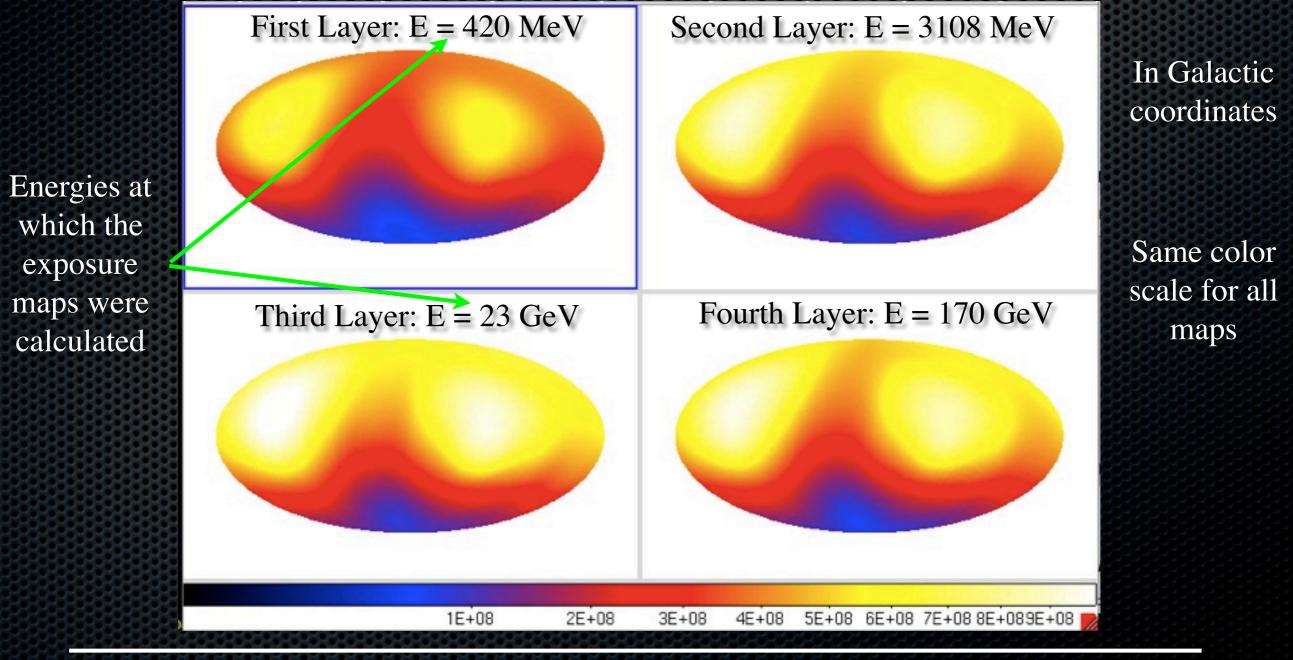
Looking At The Exposure

- An exposure map simply shows how Fermi viewed the sky within some time interval.
- * For this task we use:
 - gtltcube: This tool creates a livetime* cube, which is a HealPix table, covering the full sky, of the integrated livetime as a function of inclination with respect to the LAT z-axis.
 - gtexpcube: Generates exposure maps

*Livetime: The accumulated time during which the LAT is actively taking event data

- gtltcube takes a lot of time to run especially for long observations.
- * We will thus look at the exposure for the last week of the observation file we downloaded. (One can use gtltsum to add exposure cubes. More on this to come)

```
$ gtltcube
Event data file[] FT1_gtmktime_292937396-293542196MET.fits
Spacecraft data file[] L100422151847E0D2F37E30_SC00.fits
Output file[] expCube_292937396-293542196MET.fits
Step size in cos(theta) (0.:1.) []0.025
Pixel size (degrees)[0.5] 1
Working on file
L100422151847E0D2F37E30_SC00.fits.....!
```


gtexpcube

Exposure Maps

- stexpmap produced four exposure maps for the energies shown.
- * The units of these maps are cm² s

Aous Abdo

Fermi LAT Data Exploration

Adding Exposure Cubes

- Generating exposure cubes with gtltcube can take a lot of time.
- * To over come this, we:
 - Split the event data file into smaller time bins. On the order of 4-7 days is fine.
 - run gtltcube on each of these files separately on the cluster to generated individual exposure cubes.
 - use gtltsum to add up all these cubes.
 - Note that gtltcube adds two files at a time so one would need to script the addition of large number of cubes.

```
$ gtltsum
Livetime cube 1 or list of files[] expCube0.fits
Livetime cube 2[none] expCube1.fits
Output file [] : expCube.fits
```