

Fermi

Gamma-ray Space Telescope

Analysis Workshop 11 January 2010

Advanced Likelihood

E. Hays

Goals

- Quality checks on spectral fitting of point sources
 - Major gotchas
 - Simple checks
 - Spectral residuals
 - Models revisited
 - Checking results
- Binned vs. Unbinned likelihood

Major gotchas

Flux/Spectral analysis depends critically on calculating the proper exposure

(gtbin)		ı	(gtsrcmaps)	(gtlike binned)		
	gtselect	gtmktime	gtlcube	gtexpmap	gtlike	
	selection		livetime	response/exposure	minimization	

- Examples of things that can screw this up
 - fselect, fcopy
 - these do not update the header keywords used in the exposure calculation
 - Mismatch of data selection and IRF set
 - Use the diffuse class IRFs with the diffuse class event selection
 - Mismatch of ROI selection (gtselect) and data cube (gtbin) in binned likelihood analysis

Major Gotchas II

- Mismatch of calculated diffuse response and model diffuse components
 - Use the recommended diffuse models with the data (includes precalculated diffuse response values for each photon for those specific models)
 - Diffuse response for experts
 - gtdiffrsp calculates the diffuse response values
 - Use unique names in the input xml model for different diffuse model templates
 - Example: If you come up with a new version of the Galactic diffuse template, don't call it "GAL_v02"
- The currently recommended isotropic template is only appropriate for use with the diffuse event class

Likelihood output - simple checks

Did the fit work and does it make sense? Reading the tea leaves of gtlike output

- Did the minimization converge?
- Are the number of predicted photons reasonable?
- Do the parameter values make sense?
 - Are values hitting limits?
 - Is there a source with an extremely soft spectrum or hard spectrum?
- Do the parameter errors make sense?
 - Too small? Were enough parameters left free?
 - Larger than the parameter values? Is the source significant?
- Consider the above for the target source and field sources
- All of the above become more critical for faint sources, complex regions, time-binned flux light curves...

Gtlike bits

Convergence

Minuit did successfully converge. # of function calls: 2401 minimum function Value: 2808753,9585 minimum edm: 0.74929079

Example Source Results

Source A: 2 free parameters

Integral: 0.000706819 +/- 0.017999

Index: -4.87644 +/- 1.0237

LowerLimit: 100 UpperLimit: 100000 Npred: 0.116799 ROI distance: 10.1342 TS value: -0.00617604

Source B: 2 free parameters

Integral: 0.479765 +/- 0.156542
Index: -2.37132 +/- 0.12927

LowerLimit: 100 UpperLimit: 100000 Npred: 458,434 ROI distance: 3,26662 TS value: 25,9222

Source C: 0 free parameters

Integral: 6,28448 Index: -2,33404 LowerLimit: 100 UpperLimit: 100000 Npred: 315,177

Failed Convergence

WARNING: FunctionMinimum is invalid.

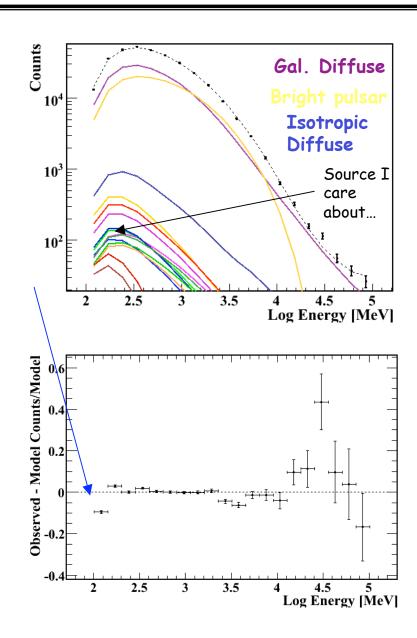
Exception encountered while minimizing objective function: Minuit abnormal termination. No convergence?

Computing TS values for each source (40 total)

Galactic Diffuse: 2 free parameters

Prefactor: 0.984611 +/- 0.00884279 Index: 0.0296784 +/- 0.00345898 Scale: 100

Scale: 100 Npred: 175955


Crude Fit Quality Info

```
WARNING: Fit may be bad in range [100, 199,526] (MeV)
WARNING: Fit may be bad in range [281,838, 398,107] (MeV)
WARNING: Fit may be bad in range [2238,72, 4466,84] (MeV)
WARNING: Fit may be bad in range [25118,9, 35481,3] (MeV)
Total number of observed counts: 325124
Total number of model events: 325093
-log(Likelihood): 2808753,988
```


Spectral Residuals

- Unbinned analysis produces predicted counts and residuals as a function of energy.
 - Example: a long integration near the Galactic plane and a bright pulsar
- Discrepancy at low energy common
 - Likelihood uses true energy
- Discrepancies strongly tied to diffuse model for most analysis
 - Diffuse mediates cross talk between target source and nearby neighbors
 - Consider relative source strength
 - Test impact of model choices and selections on target source

Likelihood - ROI selection

How big?

- Big enough to constrain model components source of interest, diffuse emission, nearby sources
- Small enough to avoid significant zenith cut loss to livetime
 - Practical advantage! less photons and less sources => less calculations for unbinned analysis
 - Analysis disadvantage! likelihood is an inclusive modeling strategy
- Recommendations
 - ~10 deg for isolated point source (E>100 MeV)
 - Larger regions (15-20 deg) benefit confused sources, aid in separating diffuse at low energy, improve error estimates
- Test it!
 - Are fit results reliable for different ROI radii?
 - What is the impact on GTIs?

Likelihood Model - sources

What should be included?

- All sources that contribute photons to the selected region
 - Bright source list sources within ~10 deg of the ROI boundary accommodates tail of low energy PSF
 - Same goes for 1FGL catalog sources once available
- Galactic diffuse model
- Isotropic diffuse model
 - Important for all parts of the sky...provides a home for residual instrument effects (cosmic rays)

This is a starting point. Adapt to find what works best for your region and source.

Likelihood Model - spectra

What spectral shape?

- Power laws are simple and well defined
 - For faint sources, difficult to justify more parameters
- BUT lots of LAT sources are not simple power laws... some tips to help motivate other spectral forms
 - Bright pulsars?
 - Try simple exponentially cutoff power laws to improve fits for the pulsar itself and for nearby sources
 - Visually inspect energy-dependent ROI selections
 - Do power-law fit parameters vary significantly for different minimum energy selections or fits in separate energy bins?
- Confirm: Most accurate and unbiased way to determine spectral parameters and errors is by testing the hypothesis using the likelihood analysis

Likelihood - reality checks

Is anything missing?

- Visual inspection of count maps and residuals
- Test Statistic maps (for unbinned analysis)
 - gttsmap Tests hypothesis of additional point source over a spatial grid
 - Very Calculation Intensive
 - try small regions (5 deg) and large grid spacing (0.5 deg)
 - Discrepancies may be additional source or component, or could be deficiencies in the diffuse model in some regions
 - Warning: gttsmap is not ideal for localization, use gtfindsrc
- Predicted and residual count maps (for binned analysis)
 - Profiles, radial density, energy dependence

Likelihood - checking results

Is the result consistent for a different analysis?

- Iteration
 - Consistent results for the best fit parameters?
 - Tip: gtlike sfile=best_fit_model.xml
- Data selection tests
 - Minimum energy selection?
 - ROI selection? (Keep in mind this also effects good time selection in combination with zenith cut)
 - Consistency in distinct energy bins (catalog analysis)
 - Agreement using front or back events (requires use of appropriate IRFs, diffuse response, and isotropic model for each)
 - Time selections?
- Fit and Minimization choices
 - Impact of starting parameter values in the model?
 - Fit tolerence? (converging to true minimum?)
 - Effects of optimizer?

Binned vs. Unbinned Likelihood

- Unbinned: Treats each photon independently (position, energy)
 - Best theoretical performance
 - More sensitive important for faint sources
 - Best option for low statistics scenarios (e.g. flux light curves)
 - Drawbacks:
 - Not for use with spatially extended sources
 - Difficult to diagnose problems in individual source fit
- Binned: Treats the data in bins of position and energy. Minimal criteria - photons > bins
 - Less computationally intensive than unbinned
 - Handles templates for extended sources
 - Allows nice diagnostics of fit (source maps, spatial profiles, energy dependent comparisons of prediction and model)
 - Drawback: At highest energies, can run into low statistics even for long integrations

Use of both allows consistency check (if both can be reasonably used)

Summary

- Lots of ways to use the tools to evaluate spectral fitting and to validate results
 - Consistency is key
 - Cicerone documentation provides deeper insight into into the likelihood technique
 - The Bright Source List paper (and soon the First Catalog paper) provides detailed examples of spectral fitting with the science tools