

LAT Light Curve Analysis

Fermi Analysis Workshop

Boston University, Jan. 11, 2010

Elizabeth Ferrara - FSSC 1

Photometry

- LAT Light Curves can be obtained in two basic ways:
 - Likelihood Analysis
 - Aperture Photometry
- Likelihood analysis has the potential for greater senstivity. However, aperture photometry is easier, faster, and has the benefit of model independence.
- ► This presentation only deals with aperture photometry


Aperture Photometry Process

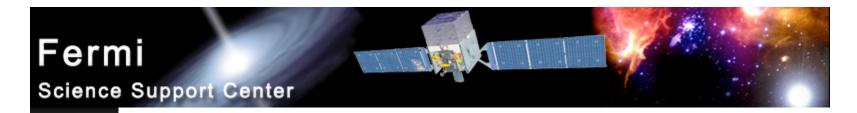
- It is recommended to use a script to create an analysis chain from the toolset
 - fkeypar extracts start and stop times
 - gtselect performs desired data cuts
 - gtmktime creates good time intervals
 - gtbin makes quasi-light curve (counts rather than rate)
 - fdump exports data
 - other tools convert counts to rates, calculate errors

Extract Start/Stop Times

- \$ fkeypar "L090923112502E0D2F37E71_PH00.fits[1]" TSTART (photon start time = 266976000.)
- \$ fkeypar "L090923112502E0D2F37E71_PH00.fits[1]" TSTOP (photon stop time = 275369897.)

Perform Data Selection

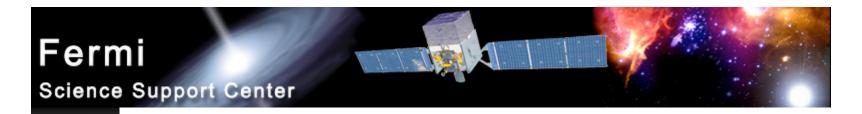
\$ gtselect zmax=105 emin=100 emax=200000 L090923112502E0D2F37E71_PH00.fits outfile=temp2_1DAY_3C454.3.fits ra=343.490616 dec=16.148211 rad=1 tmin=266976000. tmax=275369897. evclsmin=3 evclsmax=10


Parameters Specify

- Energy Range (100 to 200,000 MeV)
- Source coordinates
- 1 degree aperture radius
- Previously determined start and stop times
 - (Note: if you're going to barycenter then the min and max times should be slightly greater/less than the times in the spacecraft file
- Event class min/max (3 for diffuse class, 0 for simulated data)
- Writes to file: temp2_1DAY_3C454.3.fits

Calculate GTIs

- \$ gtmktime scfile="L090923112502E0D2F37E71_SC00.fits" filter="(DATA_QUAL==1) && (angsep(RA_ZENITH,DEC_ZENITH,343.490616,16.148211)+1<105) && (angsep(343.490616,16.148211,RA_SCZ,DEC_SCZ)<180)" roicut=n evfile="temp2_1DAY_3C454.3" outfile="temp3_1DAY_3C454.3"
- Parameters Specify
 - Good data quality
 - Photons less than 105 degrees from zenith (+1 is for 1 degree aperture)
 - Photon locations not in the exact center of the field of view
 - Input file is output from gtselect
- Writes to file: temp3_1DAY_3C454.3.fits



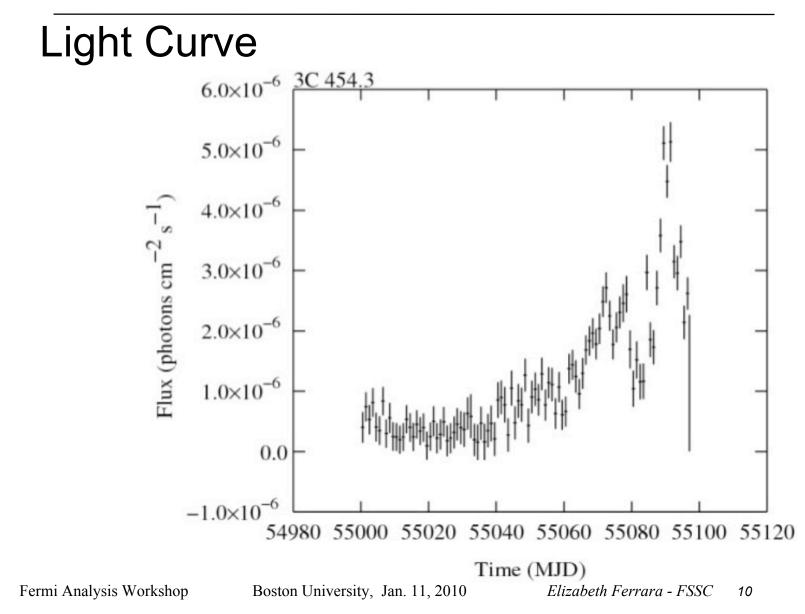
Extract a Light Curve

- \$ gtbin algorithm=LC evfile=temp3_1DAY_3C454.3.fits outfile=lc_1DAY_3C454.3.fits scfile=L090923112502E0D2F37E71_SC00.fits tbinalg=LIN tstart=266976000. tstop=275369897. dtime=86400
- Parameters Specify
 - Make a light curve (LC)
 - Input file is output file from gtselect
 - Spacecraft file
 - Linear time bins
 - Start and stop times
 - Size of time bin in seconds (86400 = 1 day bins)

Writes to file: lc_1DAY_3C454.3.fits

Calculate Exposures

- \$ gtexposure infile="lc_1DAY_3C454.3.fits" scfile="L090923112502E0D2F37E71_SC00.fits" irfs="P6_V3_DIFFUSE" srcmdl="none" specin=-2.1
- Parameters Specify
 - Spacecraft file
 - Instrument Response Function to use
 - Source model (for more complex model than power-law)
 - Spectral Index for use in power-law spectrum (convention requires minus sign)
- **EXPOSURE** column is added to file: lc_1DAY_3C454.3.fits

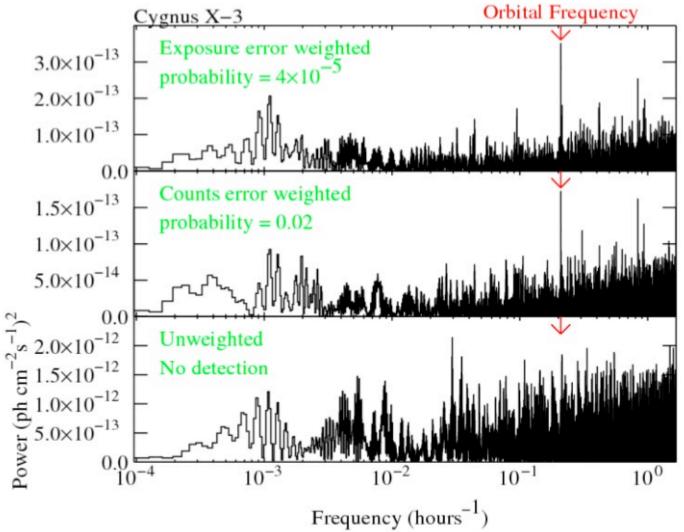

9

Results

- Final FITS file contains:
 - Time in MET
 - Bin Width in seconds
 - Number of counts per bin
 - Error
 - Exposure
- To convert to rates, use fv or other tool to divide counts by exposure
- Error bars in output are sqrt(counts)
 - ► In some instances (e.g. too few counts) this may be incorrect
 - ► Correcting this may be more complicated

Barycentering

- If your source is sensitive to the motion of the Earth, you may wish to barycenter the events file to remove that effect
- gtbary is usually used to barycenter the events file for pulsar timing. But it can also be used for light curves
 - gtbary must be the last step of the analysis (after exposure caluclation)
 - Spacecraft file must be longer than the events file (remember this when doing the gtselect step)
 - gtbary overwrites the time column with the barycentered (corrected) photon arrival times. It's wise to make a copy of your data file before running gtbary.


Using Exposure Errors

- For some purposes, errors based on observed counts may not be correct
- Alternative is to use errors based on the exposure
 - Calculate the mean count rate
 - For each time bin, calculate the expected number of counts based on the exposure for that time bin
 - Take the square root of that predicted number of counts
 - Divide by the exposure to get the rate
 - The resulting error value is based only on the "quality" of each time bin
- References for error bars treatment:
 - Gehrels, 1986, ApJ, 303, 336
 - Kraft, Burrows, & Nousek, 1991, ApJ, 374, 344

Comparing Error types

