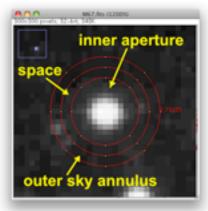
LAT Light Curve Analysis: Aperture Photometry and Periodicity Searches

Robin Corbet (Fermi Science Support Center)


corbet@umbc.edu

Talk Outline

- Photometry
 - Two methods
 - LAT specific considerations
 - Recipe for LAT aperture photometry
 - Error bars for low count rates
- Periodicity Searches
 - Binary gamma-ray sources
 - Searching for periods, power spectra
 - Weighting power spectra, exposure weighting

What is Photometry?

- Photometry is the measurement of the flux from an astronomical source of photons.
- It can either be an <u>absolute</u> measurement of the flux (e.g. ergs cm⁻² s⁻¹) or a <u>relative</u> measurement (e.g. counts s⁻¹).
- Relative measurements may be either relative to other objects, or to the same object at different times.
- A <u>light curve</u> is a series of photometric measurements as a function of time.

Aperture Photometry

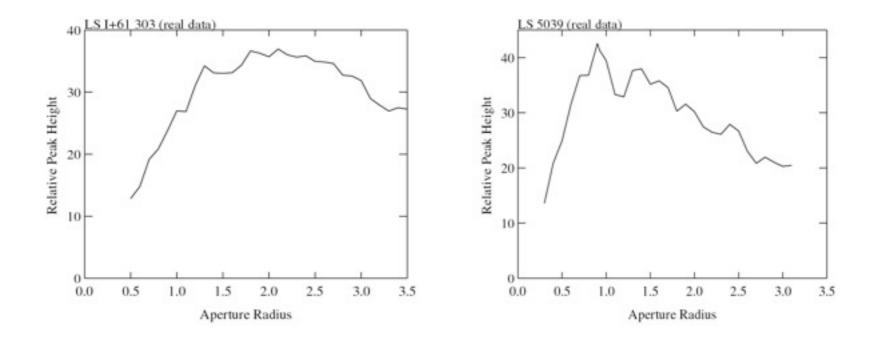
- The simplest form of photometry is aperture photometry.
 - You just measure the flux collected inside a particular region of the sky.
- This is originally done with optical telescopes by using a physical aperture (e.g. a hole in a piece of metal).
- Now, with imaging instruments, it is possible to use a <u>software defined</u> aperture.

LAT Photometry

- LAT light curves can be obtained in two basic ways:
 - Likelihood analysis (B. Lott presentation)
 - Aperture photometry
- Likelihood analysis has the potential for greater sensitivity and absolute flux measurements.
- Aperture photometry is easier, faster, and has the benefit of model independence.
- This presentation only deals with aperture photometry.

Things to be Aware of with Aperture Photometry

- The aperture contains photons from not just the source you're interested in.
 - It also contains photons from nearby sources and the background. The background is particularly strong in the Galactic plane.
- The aperture can be made smaller to reduce the background. But this also reduces the number of photons from the source.
- The aperture can be made larger to increase the photons from the source. But this increases the background.


LAT Aperture Optimization

- In optical/X-ray, aperture photometry relatively straightforward. e.g. point spread function not energy dependent.
- Want to choose aperture to maximize signal to noise ratio:

- $S/N = S/(S + B)^{1/2}$ (S = source photons, B = background)

- LAT aperture photometry complicated by:
 - PSF energy dependence
 - Background from other sources and Galactic plane is complex and energy dependent.
- Optimum aperture size and energy range to maximize S/N varies from source to source...

LAT S/N aperture dependence

For two different sources the optimum signal-to-noise ratio is obtained for different radii.

Tools Used for Aperture Photometry

- Data server
- fkeypar/pget
- gtselect
- gtmktime
- gtbin
- gtexposure
- fv or fdump + external data manipulation scripts

Steps

- It is recommended to use a script to chain together the tools.
 - fkeypar determine file start and stop times
 - gtselect filter data based on time, zenith limit, energy, position, and event class
 - gtmktime create good time intervals
 - gtbin make quasi-light curve (counts rather than rate)
 - fdump export data
 - other tools convert counts to rates, calculate errors

Get Photon File Start/Stop Times

\$ fkeypar "L090923112502E0D2F37E71_PH00.fits[1]" TSTART

(photon start time = 266976000.)

\$ fkeypar "L090923112502E0D2F37E71_PH00.fits[1]" TSTOP

(photon stop time = 275369897.)

The values obtained with "fkeypar" will then be accessible using "pget"

Filter the Photon File

\$ gtselect zmax=105 emin=100 emax=200000 infile="L090923112502E0D2F37E71_PH00.fits" outfile=temp2_1DAY_3C454.3.fits ra=343.490616 dec=16.148211 rad=1 tmin=26697 6000. tmax=275369897. evclsmin=3 evclsmax=10

Parameters specify:

- Energy range (100 to 200,000 MeV)
- Source coordinates
- 1 degree radius aperture
- start and stop times previously determined

(N.B. If you're going to barycenter then the min and max times should instead be slightly greater/less than the times in the spacecraft file.)

- evclsmin = 3 for DIFFUSE class (for <u>simulated</u> data use 0)

Writes to file: temp2_1DAY_3C454.3

Calculate GTIs (Good Time Intervals)

\$ gtmktime scfile="L090923112502E0D2F37E71_SC00.fits" filter="(DATA_QUAL==1) && (angsep(RA_ZENITH,DEC_ZENITH,343.490616,16.148211)+1<105) && (angsep(343.490616,16.148211,RA_SCZ,DEC_SCZ)<180)" roicut=n evfile="temp2_1DAY_3C454.3" outfile="temp3_1DAY_3C454.3"

Parameters specify:

- Good data quality
- photons less than 105 degrees from zenith (+ 1 is because using a 1 degree aperture)
- photon locations less than 180 degrees from center of field of view
- input file is output from gtselect

Writes to file: temp3_1DAY_3C454.3

Extract a Light Curve

\$ gtbin algorithm=LC evfile=temp3_1DAY_3C454.3.fits outfile=lc_1DAY_3C454.3.fits scfile=L090923112502E0D2F37E71_SC00.fits tbinalg=LIN tstart=266976000. tstop=275369897. dtime=86400

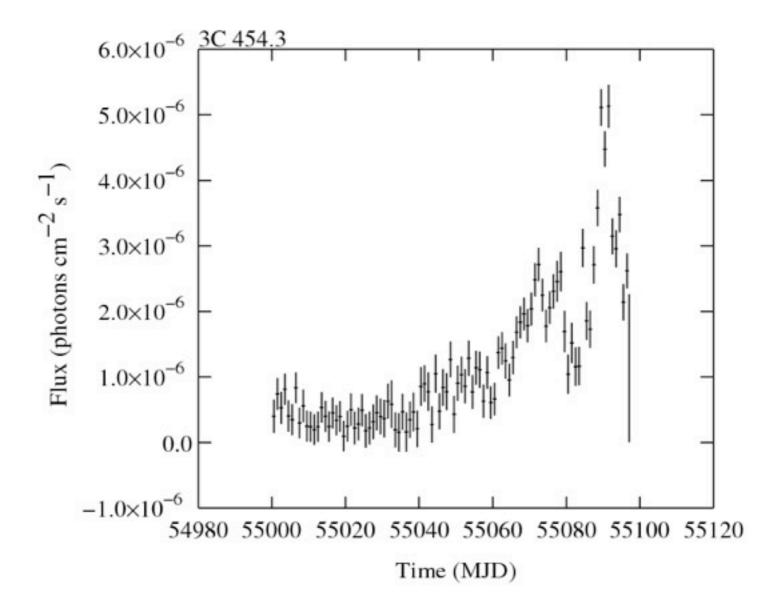
Parameters specify:

- Make a light curve (LC)
- Input file is output file from gtselect
- Spacecraft file
- Linear time bins
- Start and stop times again
- dtime = 86400: 1 day bins

Writes to file: Ic_1DAY_3C454.3.fits

Calculate Exposures of Time Bins

\$ gtexposure infile="lc_1DAY_3C454.3.fits" scfile="L090923112502E0D2F37E71_SC00.fits" irfs="P6_V3_DIFFUSE" srcmdl="none" specin=-2.1


Parameters specify:

- Spacecraft file
- Instrument response functions ("irfs"). If, for example, SOURCE class rather than DIFFUSE was used in gtselect then use irfs="P6_V3_SOURCE"
- srcmdl enables a more complex model than the default simple power law to be used in the exposure calculation.
- specin photon spectral index for power-law spectrum. Note that the minus sign must be used.

An EXPOSURE column is added to the input file: Ic_1DAY_3C454.3.fits

The Output File

- The "final" file will contain Time (in MET), Bin width (s) number of counts in the bin, Error Exposure.
- To convert to rates use e.g. fv or other software to divide counts by exposure. (Also convert from MET to MJD.)
- Error bars in output file are sqrt(counts)
 - For (e.g.) few counts this may be incorrect.
 - To do things correctly is more complicated (see supplemental material).

http://heasarc.gsfc.nasa.gov/cgi-bin/Tools/xTime/xTime.pl

xTime - A Date/Time Conversion Utility

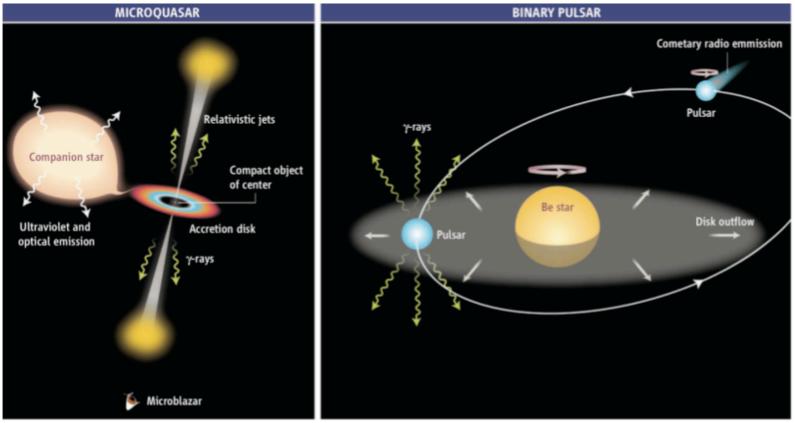
Calendar Time Formats	Input Time [UTC]	Output Time
ISO 8601 date (yyyy-MM-dd hh:mm:ss)]
Calendar date (yyyyMondd at hh:mm:ss)	9]
Year and day number (yyyy:ddd:hh:mm:ss)		
Julian Day (dddddddddd)	g	
Modified Julian Day (ddddd.ddd)		
Mission-Specific Time Formats	Input Time [MET]	Output Time [MET]
RXTE seconds since 1994.0 UTC (decimal)		
RXTE seconds since 1994.0 UTC (hexadecimal)		
RXTE mission day number (dddd:hh:mm:ss)	·	
RXTE decimal mission day (dddd.ddd)	9]
Swift seconds since 2001.0 UTC (decimal)		
Swift mission day number (dddd:hh:mm:ss)	·	
Fermi seconds since 2001.0 UTC (decimal)	g	
Fermi mission week (integer)]
Swift decimal mission day (dddd.ddd)		
Suzaku seconds since 2000.0 UTC (decimal)		

R. Corbet

barycentering

- barycentering correction of times to center of mass of the solar system
- gtbary can also be used to barycenter light curves.
- gtbary must be done as the last step.
 - If you barycenter the photon file the exposure time calculations will be wrong!
- Spacecraft file must cover longer (not same) time range than photon file.
 - If needed, use gtselect to trim down time range by tiny amount (e.g. 60 seconds)

More Advanced Error Bar Treatment


- Dealing with error bars for small numbers of counts has been discussed in the astronomical literature by e.g.
 - Gehrels, 1986, ApJ, 303, 336
 - Kraft, Burrows, & Nousek, 1991, ApJ, 374, 344
- Useful review of concept of "coverage" by Heinrich in:
 - www-cdf.fnal.gov/publications/cdf6438_coverage.pdf

Crude Approach to Low-Count Errors

- Instead of taking errors as N^{1/2}, where N is the observed number of counts, look at the ends of the error bars.
 - i.e. what underlying "population" count rate would be consistent with the "sample" count rate?
 - $\sigma = \pm 0.5 + \text{sqrt}(N + 0.25)$
 - e.g. $0 \rightarrow 0, +1, -0$
 - 1 \rightarrow 1, +1.62, -0.62
 - 2 → 2, +2, -1
- If needed, these errors can be "symmetrized".

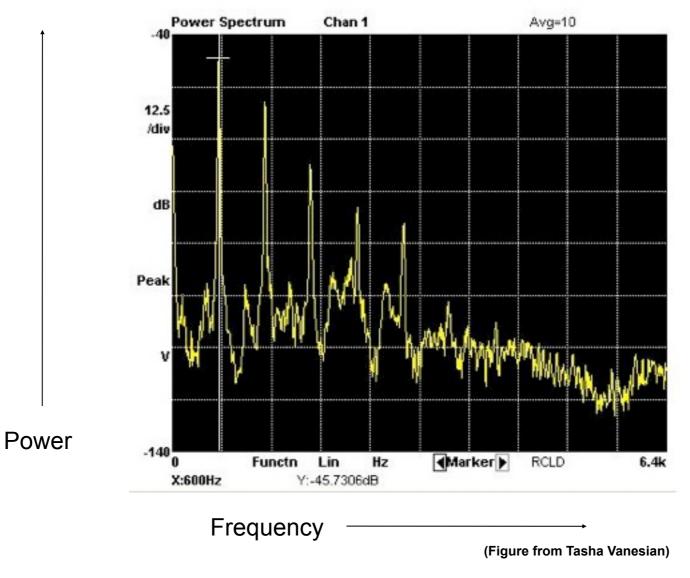
Binary Gamma-Ray Sources

 Some types of binary star systems are expected to be gamma-ray sources.

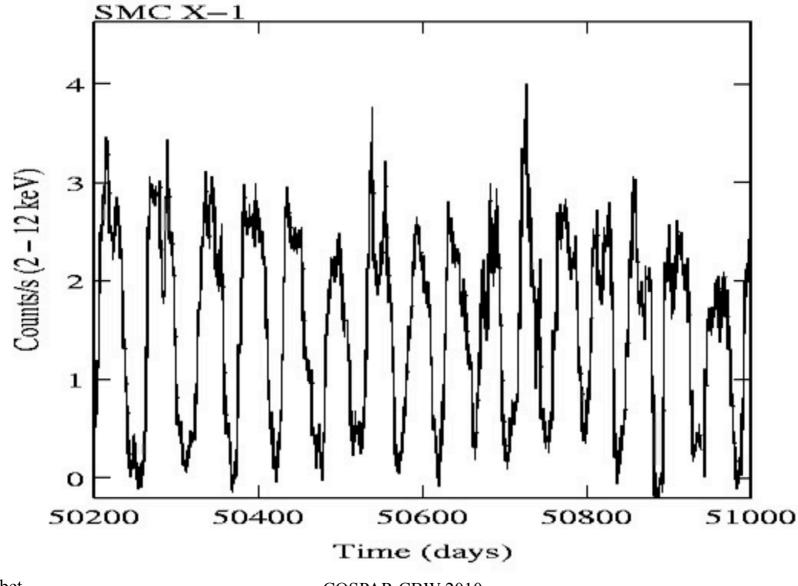
from: Mirabel (Science 309, 714, 2006)

Looking for Binary Orbital Periods

- Detection of a (non-pulse) period in an unidentified γ-ray source would be a strong indicator that the source is a binary.
- Modulation of the γ-ray light curve would give key information on the γ-ray production mechanism.
- Periods are expected to be mainly between ~hours to ~years long.
- A powerful way to search for a period in a light curve is to calculate the power spectrum...

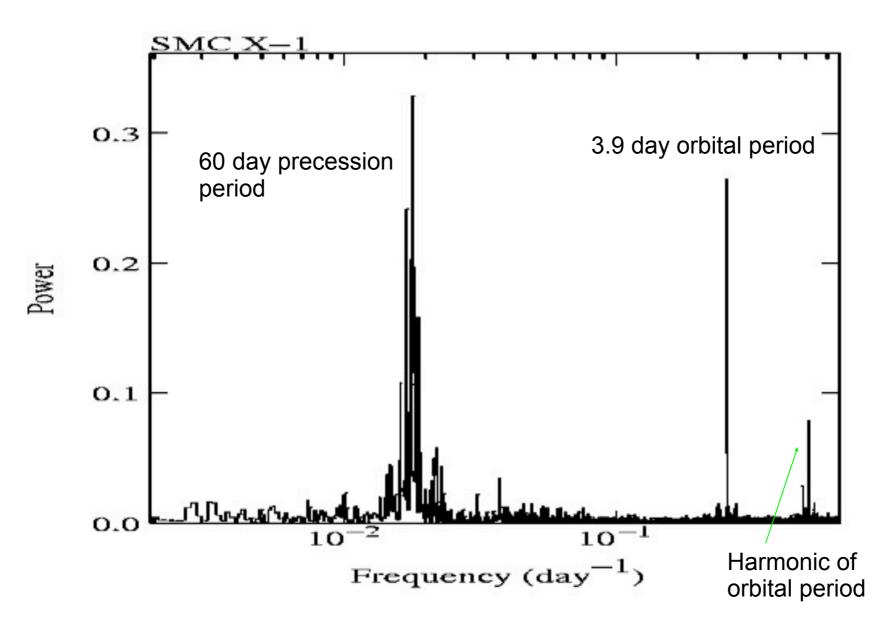

Power Spectra

A power spectrum is obtained by calculating the Fourier transform of a time series (e.g. a light curve), and then summing the sine and cosine amplitudes at each frequency.


$$P(\omega) = \frac{1}{N} \left[\left(\sum_{i} y_{i} \cos \omega t_{i} \frac{1}{j} + \left(\sum_{i} y_{i} \sin \omega t_{i} \frac{1}{j} \right)^{2} \right]$$

A periodic signal will give a peak in the power spectrum.

Power Spectrum of a Note Played on a Flute



The X-ray Light Curve of the X-ray Binary SMC X-1...

COSPAR CBW 2010

...and its Power Spectrum

Calculating Power Spectra

- A variety of software is available to calculate power spectra.
 - e.g. "powspec" in HEASARC Xronos package.
- If data are evenly spaced, then it is possible to calculate a Fast Fourier Transform (FFT) which uses less computer time.
- For unevenly spaced data, a power spectrum based on the Fourier Transform can still be calculated.
 - An important refinement of this is the Lomb-Scargle periodogram which has better statistical properties (Scargle 1982, ApJ, 263, 835).

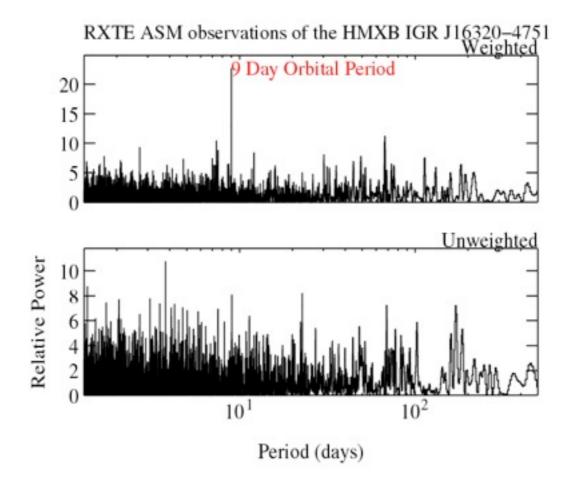
Other Period Search Techniques

- Although the power spectrum is very powerful, there are other ways to look for periodicities in the power spectrum.
- The power spectrum is well-suited for the detection of <u>sinusoidal</u> modulation. Other techniques may work better if the modulation consists of, e.g., brief flares.
- Many other techniques are related to "folding" data. i.e. taking a trial period and replacing data times with phase values for that period.

Beyond the Basics: Weighted Power Spectra

- What should be done if data points have different errors?
- •Scargle (1989) proposed that the effect of unequally weighted data points can be found by considering two points that coincide, and treating them as a single point of double weight.
- A "natural" approach to combining data points of different error bar size is to use the same weights as when calculating a <u>weighted mean</u>.

The Weighted Power Spectrum


The weighted mean of a series of values: y_1 , y_2 , ... y_n , is defined as:

$$\overline{y} = \frac{\sum_{i=1}^{n} y_i / \sigma_i^2}{\sum_{i=1}^{n} 1 / \sigma_i^2}$$

- Based on the weighted mean, calculate the power spectrum of $(y_i y_{mean})/\sigma_i^2$
 - y_i is the measured flux at time t_i and σ_i is its error.

COSPAR CBW 2010

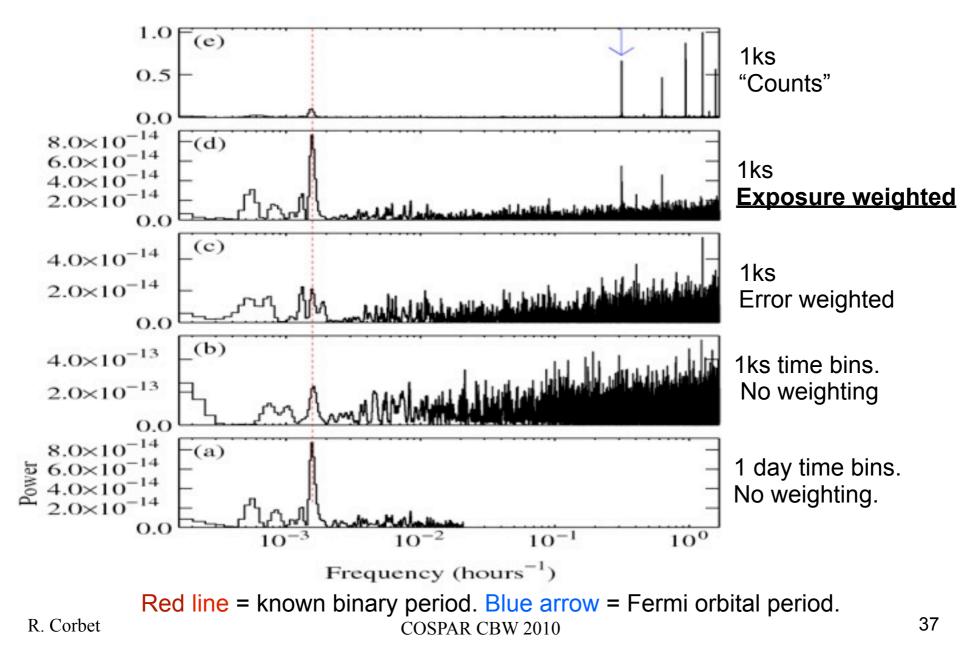
Weighting Can Reveal Orbital Periods in Faint Sources (X-ray example)

Should LAT data be weighted?

- Fermi operates almost exclusively in sky survey mode:
 - For <u>half day time bins and longer</u> (and also time bins that are multiples of the survey period) there is little variation in exposure.
 - Weighting <u>not</u> needed.
 - But, if <u>time resolutions less than survey</u> <u>period</u> are required then there are huge variations in exposure.
 - Appropriate weighting expected to be <u>crucial</u>.

How should LAT data be weighted?

- Weighting RXTE ASM and oher light curves by their errors works very well? Can/should LAT data be weighted by their errors?
 - LAT rates are counts/exposure.
 - Errors are ~(counts)^{1/2}/exposure.
 - But, there are very few counts in each time bin. There are therefore <u>shot-noise</u> <u>variations in</u> count rate & <u>error</u>.
 - Alternative is to use <u>Exposure</u> weighting.


Exposure-Based Errors

- Calculate mean count rate.
- For each time bin, calculate the <u>predicted</u> number of counts for the exposure of that time bin.
- Take the square root of predicted number of counts.
- Divide by exposure to get rate error.
- This gives an error based only on the "quality" of each time bin.

Exposure Weighted Rates vs. Unweighted Raw Counts

- Exposure weighting of rates:
 - <u>Divide</u> counts in bin by <u>exposure</u> time to get rates.
 - Use a weight based on time the weight is essentially <u>multiplying</u> by <u>exposure</u> time.
 - i.e. both divide and multiply by exposure.
- Do effects of exposure just cancel out?
- No! Crucial difference is subtraction of mean before calculating power spectrum.

Comparing weighting methods:

Results of Looking for Binary Orbital Periods in LAT Light Curves...

... will be reported on Monday!