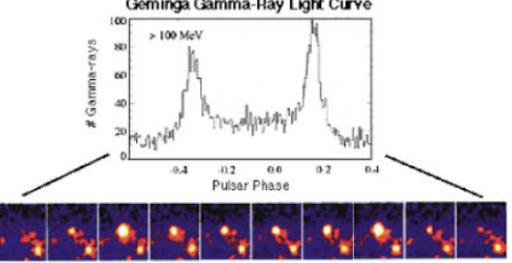

Fermi Science Tools Pulsar Timing Analysis


Dave Thompson NASA Goddard Space Flight Center Special thanks to Masa Hirayama, Fermi Science Support Center

Pulsar Timing - Basic Situation

- As the neutron star rotates, the pulses we see can be thought of as plane waves, one per pulse.
- Gamma-ray data are sparse. Thousands of rotations may occur between detected gamma rays.
- The motions of the spacecraft and the Earth are significant compared to the time between pulses (msec to sec).

Pulsar Timing - Basic Situation


- Solution: do the timing analysis in an intertial reference system, not moving with respect to the pulsar.
- The solar system barycenter (SSBC) is a good approximation to an intertial system.
- Need to calculate when the gamma rays seen by the LAT would have arrived at the SSBC.

Pulsar Timing - Basic Situation

• What we are interested in is the phase φ of each gamma ray, the fraction of one rotation relative to a reference.

$$\phi(t) = \phi_0 + f(t - t_0) + \frac{1}{2}\dot{f(t - t_0)^2} + \dots,$$

- The phase is calculated using the pulsar rotation frequency f (or Period P = 1/f), its time derivative f, and higher order terms.
- The timing parameters can be obtained from radio, X-ray, or gamma-ray data.

Typical Pulsar Analysis

Download data and screen events

- -Event file
- -Spacecraft file
- -Pulsar database file (Fermi_PulsarDB_v001.fits, or other)

Analyze time series data

- -Search for pulsations
- -Determine or refine pulsar ephemeris
- -Confirm periodicity published in the literature

Assign pulse phase or orbital phase to each photon

- -Folded light curve (pulse shape or pulse profile)
- -Phase-resolved spectrum
- -Phase-resolved image

Tips for Data Screening

For time series analysis

- For maximum sensitivity on pulse detection and frequency determination, screen data to maximize pulsed component and minimize constant ("background") component.
 - Tight spatial selection (typically size of a couple of PSFs)
 - Wider energy range
 - Broader choice of event types

For analysis using pulse/orbital phase

- Use standard event selection for spectral or image analysis.

When using existing timing solution, watch for range of validity

http://fermi.gsfc.nasa.gov/ssc/data/access/lat/ephems/

Example - PSR J2021+3651 - D4 Timing

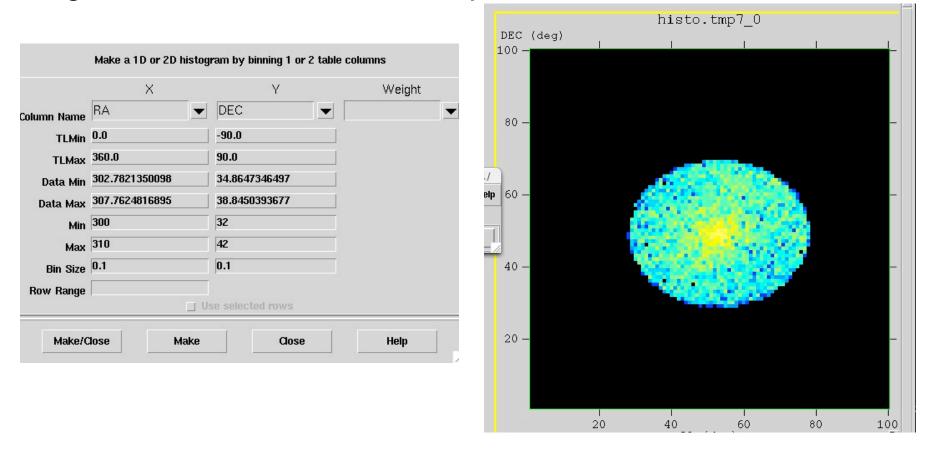
X fv: Summary of 2021+3651_ApJ_700_1059_2009_D4.fits in /Users/davidthompson/Desktop/

Index	Extension	Туре	Dimension			View		
□ 0	Primary	Image	0	Header	lma	age		Table
□ 1	SPIN_PARAMETERS	Binary	18 cols X 1 rows	Header	Hist	Plot	All	Select
□ 2	ORBITAL_PARAMETERS	Binary	15 cols X 0 rows	Header	Hist	Plot	All	Select
□ 3	OBSERVERS	Binary	4 cols X 1 rows	Header	Hist	Plot	All	Select
□ 4	ALTERNATIVE_NAMES	Binary	2 cols X 0 rows	Header	Hist	Plot	All	Select

	PSRNAME	🗌 RA	DEC	U VALID_SINCE	VALID_UNTIL	EPOCH_INT
Select	32A	D	D	J	J	J
🗌 Ali		deg	deg	d	d	d
			L1 P.C.	h la difu	1.1-104.1	1.1
Invert	Modify	Modify	Modify	Modify	Modify	Modify
	Modify PSR J2021+3651	Modity 3.052727500000E+02	Modity 3.685133300000E+01		54785	54710

	TOABARY_FRAC	F0	🗌 F1	F2	BMS	OBSERVER_CODE
Select	D	D	D	D	E	4A
🗆 Ali	d	s**(-1)	s**(-2)	s**(-3)		
Invert	Modify	Modify	Modify	Modify	Modify	Modify
1	2.279142370000E-01	9.639394858091E+00	-8.894189277846E-12	1.088777354900E-21	2.024500E-01	1

COSPAR Workshop - Fermi Data Analysis


000

Example - PSR J2021+3651 - TEMPO2 Timing

PSRJ J2021+3651 RAJ 20:21:05.46000036 82505.92249883854528036409 DECJ 36:51:04.800000 1237588.83748257817921967217 F0 9.6393948580913804 0.0000040000000000000 F1 -8.894189277846E-12 PEPOCH 54710 1.0000000000000000000 POSEPOCH 54710 1.000000000000000000000000000000000000
DECJ 36:51:04.800000 1237588.83748257817921967217 F0 9.6393948580913804 0.000000000000000000 F1 -8.894189277846E-12 9 PEPOCH 54710 1.000000000000000000000000000000000000
F0 9.6393948580913804 0.000004000000000000000000000000000000
F1 -8.894189277846E-12 PEPOCH 54710 1.000000000000000000000000000000000000
PEPOCH 54710 1.000000000000000000000000000000000000
POSEPOCH 54710 1.000000000000000000000000000000000000
DM 367.5 0.100000000000000000000000000000000000
START54634.183FINISH54785.919TZRMJD54715.22401076969653TZRFRQ1949.805TZRSITE1EPHVER2CLKTT(TAI)UNITSTDBTIMEEPHFB90DILATEFREQNPLANET_SHAPIRO NT2CMETHODT2CMETHODTEMPOCORRECT_TROPOSPHEREN
FINISH54785.919TZRMJD54715.22401076969653TZRFRQ1949.805TZRSITE1EPHVER2CLKTT(TAI)UNITSTDBTIMEEPHFB90DILATEFREQNPLANET_SHAPIRO NT2CMETHODTEMPOCORRECT_TROPOSPHEREN
TZRMJD54715.22401076969653TZRFRQ1949.805TZRSITE1EPHVER2CLKTT(TAI)UNITSTDBTIMEEPHFB90DILATEFREQNPLANET_SHAPIRO NT2CMETHODTEMPOCORRECT_TROPOSPHEREN
TZRFRQ1949.805TZRSITE1EPHVER2CLKTT(TAI)UNITSTDBTIMEEPHFB90DILATEFREQNPLANET_SHAPIRO NT2CMETHODTEMPOCORRECT_TROPOSPHEREN
TZRSITE1EPHVER2CLKTT(TAI)UNITSTDBTIMEEPHFB90DILATEFREQNPLANET_SHAPIRO NT2CMETHODTEMPOCORRECT_TROPOSPHEREN
EPHVER 2 CLK TT(TAI) UNITS TDB TIMEEPH FB90 DILATEFREQ N PLANET_SHAPIRO N T2CMETHOD TEMPO CORRECT_TROPOSPHERE N
CLKTT(TAI)UNITSTDBTIMEEPHFB90DILATEFREQNPLANET_SHAPIRO NT2CMETHODTEMPOCORRECT_TROPOSPHEREN
UNITS TDB TIMEEPH FB90 DILATEFREQ N PLANET_SHAPIRO N T2CMETHOD TEMPO CORRECT_TROPOSPHERE N
TIMEEPH FB90 DILATEFREQ N PLANET_SHAPIRO N T2CMETHOD TEMPO CORRECT_TROPOSPHERE N
DILATEFREQ N PLANET_SHAPIRO N T2CMETHOD TEMPO CORRECT_TROPOSPHERE N
PLANET_SHÀPIRO N T2CMETHOD TEMPO CORRECT_TROPOSPHERE N
T2CMETHOD TEMPO CORRECT_TROPOSPHERE N
CORRECT_TROPOSPHERE N
_
FPHFM DF405
NITS 1
NTOA 21
TRES 202.45

Example - PSR J2021+3651 - Data

Data Selection - Choose time range for valid solution, 2 degree circle about the source position.

Remember to use gtselect and gtmktime as for other data.

COSPAR Workshop - Fermi Data Analysis

Pulse / Orbital Phase Assignment

Pulse Phase

- Computes a pulse phase for each photon.
- Appends the phase value to the event entry for later use.
 - Science Tools: gtpphase Uses D4 timing solution

davidthompson% gtpphase

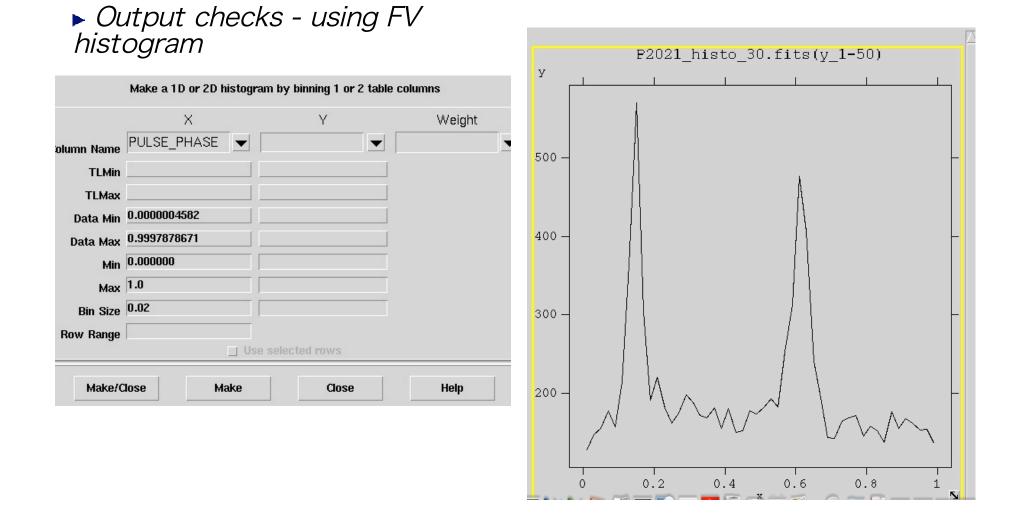
This is gtpphase version ScienceTools-v9r15p2-fssc-20090808 Event data file name[P2010_events_diffuse_gti.fits] P2010_events_diffuse_gti.fits Spacecraft data file name[L091130144149E0D2F37E47_SC00.fits] L091130144149E0D2F37E47_SC00.fits Pulsar ephemerides database file name[2021+3651_ApJ_700_1059_2009_D4.fits] 2021+3651_ApJ_700_1059_2009_D4.fits Pulsar name[PSR J2021+3651] J2021+3651 How will spin ephemeris be specified? (DB|FREQ|PER) [DB] DB

• Other tools: TEMPO2 with Fermi plugin or manual entry of timing parameters.

10

► Orbital Phase

- Computes an orbital phase for each photon.
- Appends the phase value to the event entry for later use.
 - Science Tools: gtophase


Pulse Phase Assignment

Output checks - histograms

- Look in the Phase column of the file P2010_events_diffuse_gti.fits
- Use histogram function in FV to construct a plot
- Use fhisto to generate a histogram, then view it with FV or use fplot

davidthompson% fhisto lowval=0.0 highval=1.0 Name of FITS file and [ext#][P2010_events_diffuse_gti.fits] P2021_events_diffuse_gti.fits Name of output FITS file[P2021_histo_.01.fits] P2021_histo_30.fits Name of column to generate histogram[PULSE_PHASE] Size of bins[.01] .02 input file (no binspec): file://P2021_events_diffuse_gti.fits[1] input file: file://P2021_events_diffuse_gti.fits[1][bin PULSE_PHASE=0:1:0.02] The histogram extension: 1dhisto

Pulse Phase Assignment

Pulse Phase Assignment - TEMPO2

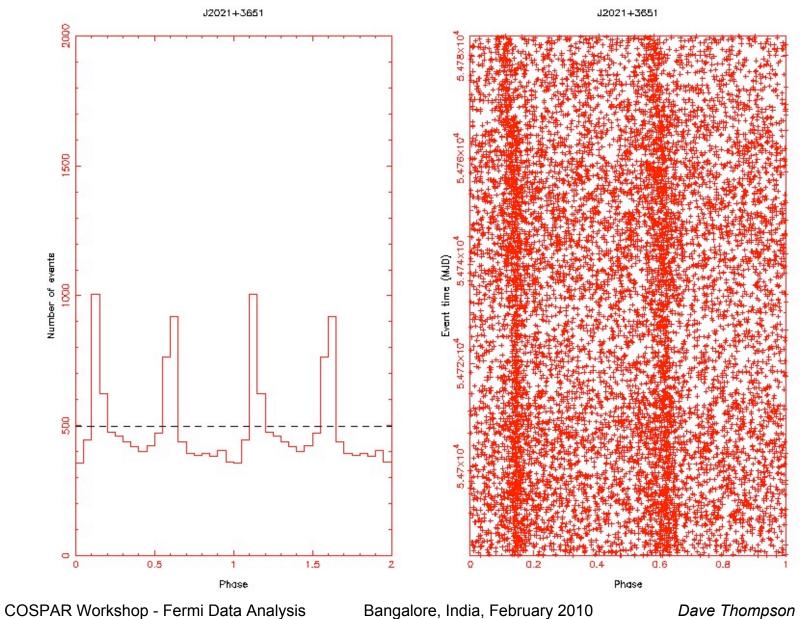
- TEMPO2 is a timing program developed by radio astronomers. Information at http://www.atnf.csiro.au/research/pulsar/tempo2/index.php?n=Main.HomePage
- There is a Fermi plugin for TEMPO2 that allows it to be used to analyze LAT data, included with the distribution.
- The .par timing solutions for TEMPO2 have more flexibility and can cover broader time ranges than the D4 timing solutions.
- As longer intervals of observations are accumulated, more and more of the LAT pulsar results are using TEMPO2 analysis.
- Unfortunately, the installation of TEMPO2 with the Fermi plugin is not fully documented yet. Coming soon.

Pulse Phase Assignment - TEMPO2

► Running TEMPO2

tempo2 -gr fermi -ft1 P2021_events_diffuse.fits -ft2 L091130144149E0D2F37E47_SC00.fits -f 2021+3651_mod.par -phase

This program comes with ABSOLUTELY NO WARRANTY. This is free software, and you are welcome to redistribute it under conditions of GPL license.


Looking for

/Users/davidthompson/tempo2_build/tempo2/T2runtime/plugins/fermi_darwin_plug.so

Output interface:fermiAuthor:Lucas GuillemotUpdated:7 September 2009Version:4.2

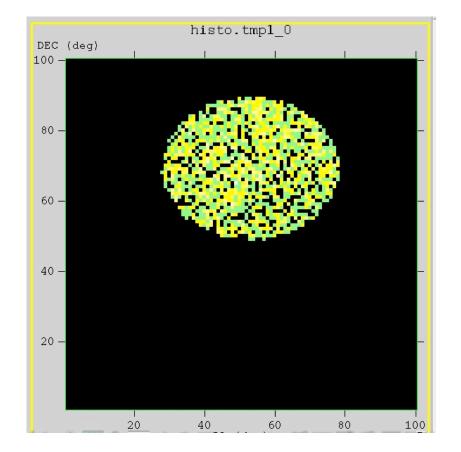
Pulse Phase Assignment - TEMPO2

Testing Pulsation Significance

Periodicity tests

- Chi-squared test (Leahy et al. 1983, ApJ 266, 160; Vaughan et al. 1994, ApJ 435, 362)
- Z_n² test (Buccheri et al. 1983, A&A 128, 245)
- Rayleigh test (equivalent to Z_n^2 test for n = 1)
- H test (De Jager et al. 1989, A&A 221, 180)
 - Science Tools: gtpsearch, gtptest
 - Other tools: efsearch (XRONOS)

davidthompson% gtptest

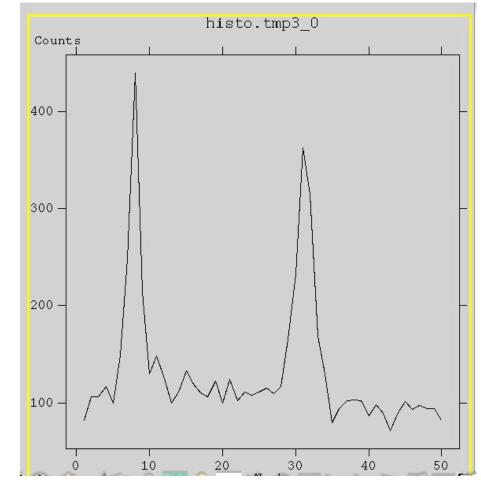

This is gtptest version ScienceTools-v9r15p2-fssc-20090808 Event data file name[P2021_events_diffuse.fits] Output FITS file name (NONE for no FITS output)[gtptest.P2021.fits] NONE Number of phase bins for Chi2 test[10] Number of harmonics for Z2n test[10] Maximum number of harmonics for H test[10]

Testing Pulsation Significance - Output

Type of test: Chi-squared Test, 10 phase bins Probability distribution: Chi-squared, 9 degrees of freedom Test Statistic: 824.028880866426 Chance Probability Range: (0, 2.03757046903054e-99) *Type of test: Rayleigh Test* Probability distribution: Chi-squared, 2 degrees of freedom Test Statistic: 46.2571601550502 Chance Probability Range: (9.02305042259081e-11, 9.02395272685048e-11) *Type of test: Z2n Test, 10 harmonics* Probability distribution: Chi-squared, 20 degrees of freedom Test Statistic: 1511 03487971911 Chance Probability Range: (0, 2.0785338644267e-99) *Type of test: H Test, 10 maximum harmonics* Probability distribution: H Test-specific Also produces a Test Statistic: 1475.03487971911 light curve plot Chance Probability Range: (0, 4e-08)

Looking for Offpulse Emission

Use gtselect with phasemin=0.7 phasemax=1.0



Offpulse map can be used to search for SNR or PWN emission, or to look for fainter sources hidden by the pulsar.

Energy-Dependent Event Selection

fselect "P2021_events_diffuse_gti.fits[EVENTS]" P2021_energydep.fits "angsep(305.273, 36.851, RA, DEC)<= min(2.5, max(0.35,(0.8*(ENERGY*1.0e-3)^(-0.80))))"

Note that fselect does not handle the exposure information, so it should only be used for pulse shape analysis (light curves).

COSPAR Workshop - Fermi Data Analysis

Utility Tools

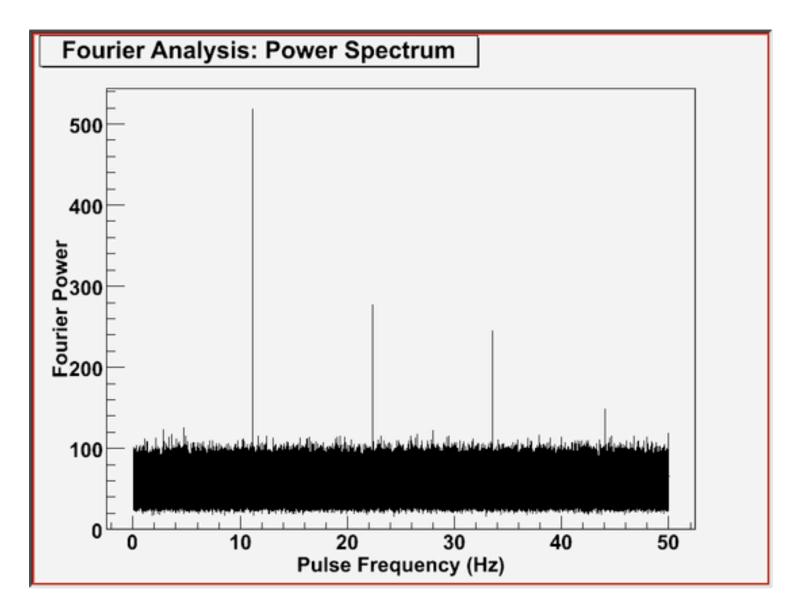
► Ephemeris computer **gtephem**

- Reads pulsar ephemerides database and computes pulsar's spin ephemeris (such as pulse frequency) at a given moment in time.
- Also serves as a sanity checker for first-time users of our pulsar ephemerides database.

Pulsar ephemerides manipulation tool gtpulsardb

- Sub-selects pulsar ephemerides from a master database.
- Also used to create, modify, merge pulsar ephemerides database.

Photon arrival time correction gtbary

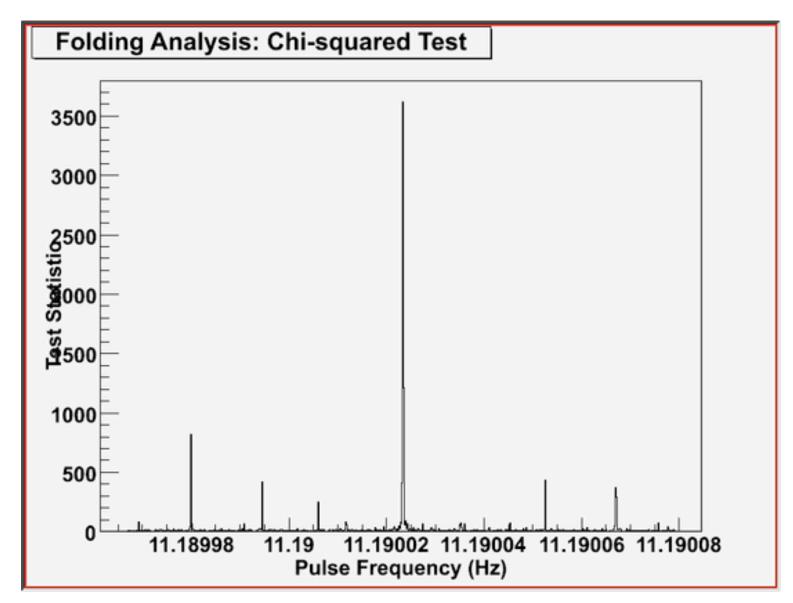

- Computes barycentric or geocentric time for each event and modifies event time in event file, for use with non-Fermi analysis tools such as XRONOS tools.
- **CAUTION:** event files processed by gtbary must not be used in any analysis with Science Tools.

Appendix - Analyzing Vela data

prompt> gtpspec This is gtpspec version ScienceTools-v9r15p2-fssc-20090701 Event data file name[] Vela 100 300000 evt02.fits Spacecraft data file name[] L090923110451E0D2F37E17 SC00.fits Name of input pulsar ephemerides database file (for binary demodulation only)[] Fermi PulsarDB v001.fits Pulsar name (for binary demodulation only)[ANY] PSR J0835-4510 Output FITS file name (NONE for no FITS output)[] gtpspec_out.fits Width of time bins, in seconds (0.:) [1.e-2] 0.01 Number of time bins to be transformed at once[1000000] 10000000 How will the time origin of the periodicity test be specified? (START|STOP|MIDDLE|USER) [MIDDLE] MIDDLE Right Ascension to be used for barycenter corrections (degrees)[0.] 128.836048 Declination to be used for barycenter corrections (degrees)[0.] -45.176425 How will spin ephemeris be specified? (FREQ PER) [FREQ] FREQ Ratio of frequency first time derivative to frequency at the time origin (Hz)[0.] 0.0 Ratio of frequency second time derivative to frequency at the time origin (Hz/s)[0.] 0.0 Search Type: Fourier Analysis Fourier Resolution: 1e-05 Hz Sampling Frequency: 1e-05 Hz Data Binning: 27 segments with 10000000 time bins in each segment Probability Distribution: Chi Squared with 54 degrees of freedom Search Range (Hz): [0.01, 50] Number of Trial Frequencies: 4999000 Number of Independent Trials: 4999000 Maximum Statistic: 518.813411319925 at 11.19001 Hz Chance Probability Range: (1.75188080614015e-70, 1.75205599227056e-70) Warning in <TClass::TClass>: no dictionary for class st graph::IFrame is available prompt>

Gtpspec is a period search routine, only useful for bright sources.

COSPAR Workshop - Fermi Data Analysis

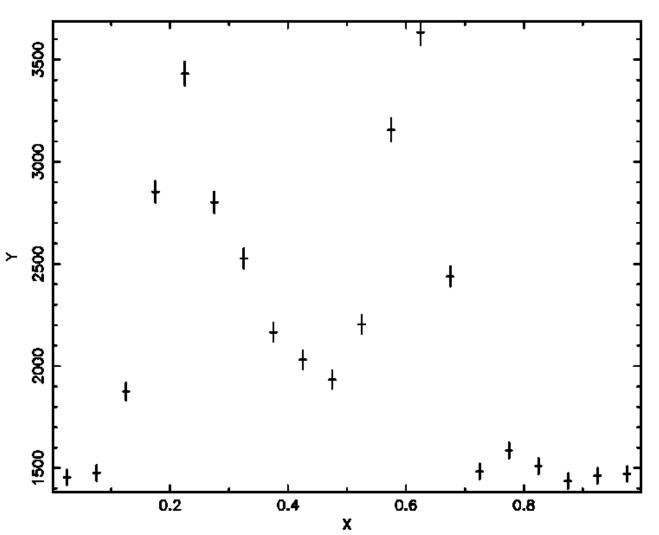


COSPAR Workshop - Fermi Data Analysis

prompt> gtpsearch This is gtpsearch version ScienceTools-v9r15p2-fssc-20090701 Event data file name[] Vela 100 300000 evt02.fits Spacecraft data file name[] L090923110451E0D2F37E17_SC00.fits Pulsar ephemerides database file name[] Fermi_PulsarDB_v001.fits Pulsar name[ANY] PSR J0835-4510 Output FITS file name (NONE for no FITS output)[] gtpsearch_out.fits Type of statistical test to perform (CHI2 - Chi squared, RAYLEIGH - Rayleigh test, Z2N - Z2n test, H - H test) (CHI2|RAYLEIGH|Z2N|H) [CHI2] Chi2 Number of phase bins for Chi2 test[10] 10 Size of steps for trials, in units of the Fourier resolution (0.:) [0.5] 0.5 Number of trials[100] 600 How will the time origin of the periodicity test be specified? (START|STOP|MIDDLE|USER) [MIDDLE] USER Time origin of the periodicity test[0.] 55028.5 Time format for the user-supplied time origin (FILE|MJD|ISO|FERMI|GLAST) [FILE] MJD Time system for the user-supplied time origin (FILE|TAI|TDB|TT|UTC) [FILE] TDB How will spin ephemeris be specified? (DB|FREQ|PER) [DB] FREQ Epoch for the spin ephemeris[0,] 54663.0 Time format for spin ephemeris epoch (FILE|MJD|ISO|FERMI|GLAST) [FILE] MJD Time system for spin ephemeris epoch (FILE|TAI|TDB|TT|UTC) [FILE] TDB Right Ascension to be used for barycenter corrections (degrees)[0,] 128,836048 Declination to be used for barycenter corrections (degrees)[0.] -45.176425 Pulse frequency at the epoch of the spin ephemeris (Hz) (0.:) [1.] 11.19051540397055 First time derivative of the pulse frequency at the epoch of the spin ephemeris (Hz/s)[0.] -1.559072535133380e-11 Second time derivative of the pulse frequency at the epoch of the spin ephemeris (Hz/s/s)[0.] 0.0 Search Type: Folding Analysis Fourier Resolution: 3,73754e-07 Hz Sampling Frequency: 1.86877e-07 Hz Type of test: Chi-squared Test, 10 phase bins Probability distribution: Chi-squared, 9 degrees of freedom Search Range (Hz): [11,1899669982264, 11,1900789375696] Number of Trial Frequencies: 600 Number of Independent Trials: 300 Maximum Statistic: 3617.22319536 at 11.1900234350906 Hz Chance Probability Range: (0, 6.11271140709163e-97) Warning in <TClass::TClass>: no dictionary for class st graph::IFrame is available prompt>

Gtpsearch can be used to find a period once a range is known.

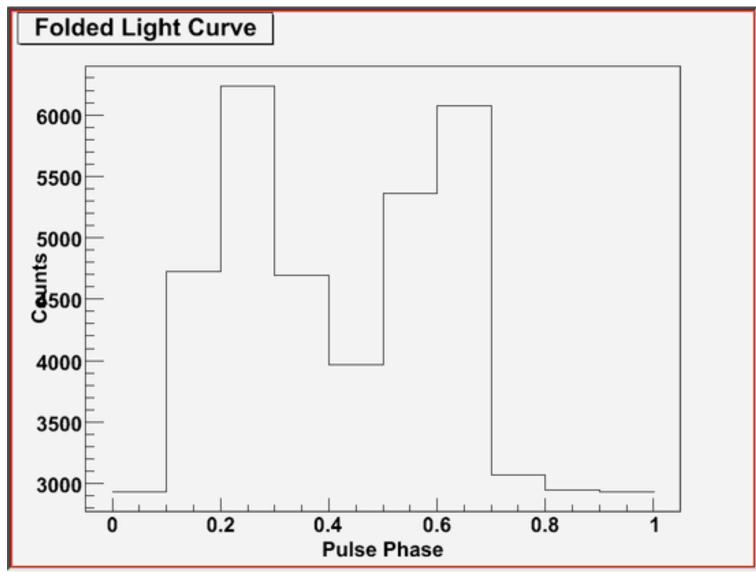
COSPAR Workshop - Fermi Data Analysis



prompt> gtpphase This is gtpphase version ScienceTools-v9r15p2-fssc-20090701 Event data file name[] Vela 100 300000 evt02.fits Spacecraft data file name[] L090923110451E0D2F37E17 SC00.fits Pulsar ephemerides database file name[] Fermi_PulsarDB_v001.fits Pulsar name[ANY] PSR J0835-4510 How will spin ephemeris be specified? (DB|FREQ|PER) [DB] FREQ Epoch for the spin ephemeris[0.] 55028.5 Time format for spin ephemeris epoch (FILE MJD ISO FERMI GLAST) [FILE] MJD Time system for spin ephemeris epoch (FILE|TAI|TDB|TT|UTC) [FILE] TDB Right Ascension to be used for barycenter corrections (degrees)[0,] 128,836048 Declination to be used for barycenter corrections (degrees)[0,] -45,176425 Base value of phase at this epoch[0.] 0.5 Pulse frequency at the epoch of the spin ephemeris (Hz) (0.:) [1.] 11.1900234350 906 First time derivative of the pulse frequency at the epoch of the spin ephemeris (Hz/s)[0,] -1,559072535133380e-11 Second time derivative of the pulse frequency at the epoch of the spin ephemeris (Hz/s/s)[0.] 0.0 prompt>

```
prompt> fhisto lowval=0.0 highval=1.0
Name of FITS file and [ext#][] Vela_100_300000_evt02.fits
Name of output FITS file[] velapulsar_pulse_shape.fits
Name of column to generate histogram[] PULSE_PHASE
Size of bins[INDEF] 0.05
input file (no binspec): file://Vela_100_300000_evt02.fits[1]
input file: file://Vela_100_300000_evt02.fits[1][bin PULSE_PHASE=0:1:0.05]
The histogram extension: 1dhisto
prompt>
```

```
prompt> fplot
Name of FITS file and [ext#][] velapulsar_pulse_shape.fits
Name of X Axis Parameter[error][] X
Name of Y Axis Parameter[error] up to 8 allowed[] Y[Error]
Lists of rows[-] -
Device: /XWindow, /XTerm, /TK, /PS, etc[/XW] /xserv
Any legal PLT command[] marker on
PLT> exit
prompt>
```


Plot of file velapulsar_pulse_shape.fits

29-Sep-2009 16:26

COSPAR Workshop - Fermi Data Analysis

prompt> gtptest This is gtptest version ScienceTools-v9r15p2-fssc-20090701 Event data file name[] Vela 100 300000 evt02.fits Output FITS file name (NONE for no FITS output)[] gtptest out.fits Number of phase bins for Chi2 test[10] 10 Number of harmonics for Z2n test[10] 10 Maximum number of harmonics for H test[10] 10 Type of test: Chi-squared Test, 10 phase bins Probability distribution: Chi-squared, 9 degrees of freedom Test Statistic: 3617.22319536 Chance Probability Range: (0, 2.03757046903054e-99) Type of test: Rayleigh Test Probability distribution: Chi-squared, 2 degrees of freedom Test Statistic: 1700.6017260263 Chance Probability Range: (0, 2.00883927982452e-99) Type of test: Z2n Test, 10 harmonics Probability distribution: Chi-squared, 20 degrees of freedom Test Statistic: 4797.77337691268 Chance Probability Range: (0, 2.07853386442652e-99) Type of test: H Test, 10 maximum harmonics Probability distribution: H Test-specific Test Statistic: 4762.16995611264 Chance Probability Range: (0, 4e-08) Warning in <TClass::TClass>: no dictionary for class st_graph::IFrame is available prompt>

COSPAR Workshop - Fermi Data Analysis