THE X-RAY VIEW OF MISALIGNED AGNs

Eleonora Torresi

INAF/IASF Bologna, ITALY

with many thanks to Paola Grandi INAF/IASF Bologna

Fermi and Jansky: Our Evolving Understanding of AGN, St. Michaels, MD

lunedì 9 gennaio 12

MISALIGNED AGN (MAGN) see P. Grandi's talk Sources with the jet pointed away from the observer

At zeroth order, the unified models of AGN identify FRIs and FRIIs with the parent population (the misaligned counterparts with respect to the jet direction) of BL Lacs and FSRQs.

Fanaroff & Riley 19	74 Година Развиниз<1025 W на	z ⁻¹ sr ⁻¹ P178MHz>10	²⁵ W Hz ⁻¹
	BLRGS Broad Line Radio Galaxies	bright continuum and broad emission lines from hot high velocity gas	FRII
Radio Quiet Radio Quiet	NLRGs/HEG Narrow Line Radia Galaxies/High Excitation Galaxies	weak continuum and only narrow emission lines	FRII
Sey 2 Sey 2 Sey 1 Radio Quiet QSO Originally from Urry & Padovani 1995	NLRGs/LEG Narrow Line Radio Galaxies/ Low Excitation Galaxies	narrow emission lines: EW _[OIII] >10 Å and/or O[II]/ O[III]>1	FRII FRI

lunedì 9 gennaio 12

It is still unclear what causes the FRI/FRII dichotomy

It is still unclear what causes the FRI/FRII dichotomy

I) Ledlow & Owen (1994) found a correlation between the radio power at the FRI/FRII transition and the host galaxy magnitude

2) Bicknell 1995 points to different ways in which the jet interacts with the ambient medium: the FRI jets start highly relativistic and decelerate between the subpc and kpc scales

3) Baum et al. (1995) and Reynolds et al. (1996) suggest different nuclear intrinsic properties of the accretion and jet formation and the jet content

4) Ghisellini & Celotti (2001) indicate that the **accretion process** itself might play a key role in ^{*} the deceleration and dichotomic behavior by affecting the pc-kpc scale environment

Optical observations seem to indicate that FRIs and FRIIs have different accretion regimes

The optical flux of FRI shows a strong correlation with the radio core one over four decades, arguing for a nonthermal synchrotron origin of the nuclear emission (Chiaberge et al. 2002)

There is no nuclear absorption in FRI HST images. The weakness of the optical lines is not due to obscuration (Chiaberge et al. 2002)

This scenario is also supported by IR observations

nucleus and a large NIR excess --> hot circumnuclear dust (dusty torus) The accretion rate distribution is bimodal: Low accretion rate => FRI High accretion rate => FRII +Quasar

Marchesini et al. 2004

Investigate the X-ray spectral properties of MAGNs direct study of the spectral behavior of the X-ray nuclei

Table 1: The Sample 15-month data									
Object	1FGL Name	RA (J2000)	Dec (J2000)	Redshift	Clas Radio	s Optical	Log (CD) at 5 GHz	ref	Cat.
3C 78/NGC 1218	1FGLJ0308.3+0403	03 08 26.2	+04 06 39	0.029	FRI	G	-0.45	1	3CR
3C 84/NGC 1275	1FGLJ0319.7+4130	03 19 48.1	+41 30 42	0.018	FRI	G	-0.19	2^a	3CR
3C 111	1FGLJ0419.0+3811	04 18 21.3	+380136	0.049	FRII	BLRG	-0.3	3	3CRR
3C 120		04 33 11.1	$+05\ 21\ 16$	0.033	FRI	BLRG	-0.15	1	3CR
PKS 0625-354	1FGLJ0627.3-3530	06 27 06.7	$-35\ 29\ 15$	0.055	FRI ^b	G	-0.42	1	MS4
3C 207	1FGLJ0840.8+1310	08 40 47.6	$+13\ 12\ 24$	0.681	FRII	SSRQ	-0.35	2	3CRR
XPKS 0943-76	1FGLJ0940.2-7605	09 43 23.9	- 76 20 11	0.27	FRII	G	< -0.56	4	MS4
M87/3C 274	1FGLJ1230.8+1223	12 30 49.4	+12 23 28	0.004	FRI	G	-1.32	2	3CRR
Cen A	1FGLJ1325.6-4300	13 25 27.6	- 43 01 09	0.0009 ^c	FRI	G	-0.95	1	MS4
NGC 6251	1FGLJ1635.4+8228	16 32 32 .0	+82 32 16	0.024	FRI	G	-0.47	2	3CRR
3C 380	1FGLJ1829.8+4845	18 29 31.8	+48 44 46	0.692	FRII/CSS	SSRQ	-0.02	2	3CRR

Abdo, A.A., et al. 2010, ApJ, 720, 912

8 FRI-4 FRII

lunedì 9 gennaio 12

FRI: NGC 6251

Fermi-LAT lightcurve between 100 MeV-100 GeV (Migliori et al. 2011)

WSRT 327 MHz Jodrell Bank/J.P. Leahy 2003

lunedì 9 gennaio 12

WSRT 327 MHz Jodrell Bank/J.P. Leahy 2003

400

1000 1600

XMM-Newton and Swift

Γ=1.89±0.04 kT=0.6±0.02 keV

 $F_{(2-10keV)} = 3.6 \times 10^{-12} \text{ erg cm}^2 \text{ s}^{-1}$

* No iron Kα line * X-ray variability detected on time scale of years

FRII: 3C III

see also Hogan et al. 2011

Suzaku 22 August 2008

 $\Gamma = 1.57 \pm 0.06$ $E_{Fe} = 6.4 \pm 0.02 \text{ keV}$ $\sigma = 0.05 \pm 0.03 \text{ keV}$ EVV = 62 eV

 $F_{(2-10keV)} = 1.7 \times 10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1}$

see also Ballo et al. 2011

XMM-Newton 15 February 2009

$\Gamma = 1.63 \pm 0.01$ $E_{Fe} = 6.40 \pm 0.05$ keV $\sigma < 0.15$ keV EW = 56 eV

 $F_{(2-10keV)} = 4.7 \times 10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1}$

XMM-Newton 15 February 2009

$\begin{aligned} & \Gamma = 1.63 \pm 0.01 \\ & E_{Fe} = 6.40 \pm 0.05 \text{ keV} \\ & \sigma < 0.15 \text{ keV} \\ & EVV = 56 \text{ eV} \end{aligned}$

 $F_{(2-10keV)} = 4.7 \times 10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1}$

The line is produced in the Broad Line Regions at ~160 R_G (see also Chatterjee et al. 2011)

Peculiar case: 3C 120 An FRI with a powerful accretion disk

Abdo, A.A., et al. 2010, ApJ, 720, 912

lunedì 9 gennaio 12

XMM-Newton

 $\Gamma = 1.79 \pm 0.01$ $E_1 = 6.42 \pm 0.03$ keV $\sigma_1 = 0.14 \pm 0.03$ keV $EVV_1 = 86$ eV

 E_1 =6.94±0.04 keV σ_1 =0.06 keV EW_1 =31 eV

 $F_{(2-10keV)} = 4.5 \times 10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1}$

The Fe Kα line is produced in the Broad Line Region (Ogle et al. 2005)

MAGN sample

Name	Class	N _H	F _X	Гх	FeKα	Fγ	Гү
3 C 84	FRI	<0, I	1,24	1,80	no	222	2,13
3CI20	FRI	0,088	4,5	1,76	yes	29	2,71
M87	FRI	0,023	0,16	2,40	_	24	2,21
625 I	FRI	0,054	0,45	1,89	no	36	2,52
3 C 78	FRI	<0,1	0,045	2,0	no	4,7	1,95
CENA	FRI	8,3	29	1,50	yes	214	2,75
0625-35	FRI	<0, I	0,26	2,52	no	4,8	2,06
FORA	FRI	0,02	0,014	I,70	no	9,78	2,29
3C207	SSRQ	<0,13	0,16	1,62	yes	24	2,42
3C380	CSS		0,4	1,54	-	31	2,5 I
3CIII	FRII	0,77	4,5	1,63	yes	40	2,54
PICA	FRII	<0,01	0,6	1,72	yes	<15	2,50

* N_H is in 10²² cm⁻²

- * Fx is in units of 10⁻¹¹ erg cm⁻² s⁻¹
- * Fy is in units of 10⁻⁹ phot cm⁻² s⁻¹

Name	Class	N _H	F _X	Гх	FeKα	Fγ	Гү
3 C 84	FRI	<0,1	I,24	I,80	no	222	2,13
3CI20	FRI	0,088	4,5	I,76	yes	29	2,71
M87	FRI	0,023	0,16	2,40		24	2,21
625 I	FRI	0,054	0,45	1,89	no	36	2,52
3 C 78	FRI	<0,1	0,045	2,0	no	4,7	1,95
CENA	FRI	8,3	29	1,50	yes	214	2,75
0625-35	FRI	<0,1	0,26	2,52	no	4,8	2,06
FORA	FRI	0,02	0,014	I,70	no	9,78	2,29
3C207	SSRQ	<0,13	0,16	1,62	yes	24	2,42
3C380	CSS		0,4	I,54	11. <mark>-</mark> 1. 16	31	2,5 I
3CIII	FRII	0,77	4,5	1,63	yes	40	2,54
PICA	FRII	<0,01	0,6	1,72	yes	<15	2,50

* N_H is in 10²² cm⁻²

- * Fx is in units of 10⁻¹¹ erg cm⁻² s⁻¹
- * Fy is in units of 10⁻⁹ phot cm⁻² s⁻¹

Name	Class	N _H	F _X	Гх	FeKα	Fγ	Гү
3 C 84	FRI	<0, I	1,24	1,80	no	222	2,13
3CI20	FRI	0,088	4,5	1,76	yes	29	2,71
M87	FRI	0,023	0,16	2,40	-	24	2,21
625 I	FRI	0,054	0,45	1,89	no	36	2,52
3 C 78	FRI	<0, I	0,045	2,0	no	4,7	1,95
CENA	FRI	8,3	29	1,50	yes	214	2,75
0625-35	FRI	<0, I	0,26	2,52	no	4,8	2,06
FORA	FRI	0,02	0,014	I,70	no	9,78	2,29
3C207	SSRQ	<0,13	0,16	1,62	yes	24	2,42
3C380	CSS		0,4	1,54	-	31	2,51
3CIII	FRII	0,77	4,5	1,63	yes	40	2,54
PICA	FRII	<0,01	0,6	1,72	yes	<15	2,50

* N_H is in 10²² cm⁻²

- * Fx is in units of 10⁻¹¹ erg cm⁻² s⁻¹
- * Fy is in units of 10⁻⁹ phot cm⁻² s⁻¹

often produced in the BLR

A possible bimodality in the Eddington ratio

MAGN sample

No difference in the black hole mass between FRIs and FRIIs

Optical I non-thermal synchrotron origin of FRI emission
Inefficient accretion flows
Iack of dusty torus

NearIR I non-thermal origin of FRI NIR emission FRIIs probably surrounded by a hot circumnuclear dust Optical I non-thermal synchrotron origin of FRI emission
Inefficient accretion flows
Iack of dusty torus --> no BLR

NearIR I non-thermal origin of FRI NIR emission FRIIs probably surrounded by a hot circumnuclear dust

X-rays TRIs are on average less absorbed than FRIIs and have steeper spectral indices

- Senerally the iron line is not present in FRIs but is present in FRIIs often originating in the BLR
- These indications point towards an inefficient accretion regime in FRIs and efficient accretion flow in FRIIs

Optical D non-thermal synchrotron origin of FRI emission \bigcirc inefficient accretion flows \Box lack of dusty torus --> no BLR

NearIR I non-thermal origin of FRI NIR emission Second Second

X-rays TRIs are on average less absorbed than FRIIs and have steeper spectral indices

If generally the iron line is not present in FRIs but is present in FRIIs often originating in the BLR

Othese indications point towards an inefficient accretion regime in FRIs and efficient accretion flow in FRIIs

Different accretion regime Different nuclear environment

The Broad Line Region in FRII radio galaxies seems to be a very active zone...

The Broad Line Region in FRII radio galaxies seems to be a very active zone...

...contrarily to what is observed in FRIs

This would explain why, at zeroth order, EC processes are dominant in FRIIs (the jet propagates through an ambient rich in photons), while in FRIs, the SSC process dominates (fewer seed photons).

lunedì 9 gennaio 12

SUMMARY

The X-ray analysis of the MAGN sample has pointed out:

➡ FRIs are on average less absorbed than FRIIs (no dusty torus) and have steeper spectral indices;

 \rightarrow generally the iron line is not present in FRIs but is present in FRIs often originating in the BLR;

→ these indications point towards an inefficient accretion regime in FRIs and efficient accretion flow in FRIIs;

➡ efficient disks ionize the BLR clouds --> sources of seed photons --> EC dominate in FRIIs

inefficient accretion flows --> paucity of photons --> SSC dominate in FRIs

