Radio-to-Gamma Ray Monitoring of Mkn 421 and Mkn 501: Source Variability

N. Nowak, D. Paneque, U. Barres de Almeida, N. Strah, D. Tescaro

On behalf of the Fermi-LAT, MAGIC, VERITAS and other collaborations and groups involved in the multiwavelength campaigns

Outline

- Introduction
- 2009 MWL campaigns on Mrk 421 and Mrk 501:
 - SEDs
 - Lightcurves
 - Variability
 - Correlations
- Conclusions & Outlook

Motivation

Blazars:

- AGN with relativistic jet pointing directly towards us
- highly variable at all wavelengths
- SEDs dominated by jet emission, two non-thermal bumps at low (radiooptical-Xray) and high (X/y-rays) energies respectively. Origin of high-energy bump not yet identified unambiguously.
- simultaneous observations of blazars over the whole wavelength range (Radio - TeV) over a long time period needed (mostly in low state).

Mrk 421 and Mrk 501:

- luminous gamma ray sources
- nearby blazars ($z\sim0.03$) which implies a low EBL absorption
- ideal candidates for multiwavelength studies

2009 MWL campaigns on Mrk421 and Mrk501

4.5 months long multiwavelength campaigns in 2009 (PI: David Paneque):

- Mrk421: Jan 19, 2009 (MJD 54850) June 1st, 2009 (MJD 54983)
- Mrk501: Mar 15, 2009 (MJD 54905) Aug 1st, 2009 (MJD 55044)
- monitored regardless of activity. However, both sources were in a relatively low state throughout the campaigns
- participating collaborations/telescopes/instruments:

MAGIC, Whipple, VERITAS, *Fermi*-LAT, *Swift*/BAT, *RXTE*/PCA, *Swift*/XRT, *Swift*/UVOT, GASP-WEBT, GRT, ROVOR, New Mexico Skies, MITSuME, OAGH, WIRO, SMA, VLBA, Noto, Metsähovi, OVRO, Medicina, UMRAO, RATAN-600, Effelsberg

2009 MWL campaigns on Mrk421 and Mrk501

Spectral Energy Distribution of Mrk 421

high-energy bump of the SED well covered by Fermi-LAT + MAGIC

Spectral Energy Distribution of Mrk 501

Modelling the Mrk 421 and Mrk 501 SEDs

- can be well described by standard one-zone synchrotron self-Compton model with 2 breaks in the electron spectrum
- model parameters (e.g. Doppler factor, size of emitting blob, magnetic field, properties of the electron population, ...) are very similar for both objects
- common properties of jets and acceleration mechanisms in blazars

Lightcurves for Mrk 421 – Radio

Lightcurves for Mrk 421 – NIR and Optical

- good coverage of optical-NIR wavelengths provided by many telescopes around the world
- flux increases with time
- significant variability

Lightcurves for Mrk 421 – UV and X-rays

Lightcurves for Mrk 501 – Radio

Lightcurves for Mrk 501 – NIR and Optical

Lightcurves for Mrk 501 – UV and X-rays

optical linear polarisation:

- steady and then drops by ~15% after flare - much larger than in March 2009

EVPA:

- continuous increase from ~15° to ~30° in 3 days before flare
- rotation stops when flare occurs
- indicates common origin for optical and y-ray emission (e.g., Marscher et al. 2010)

Variability of Mrk 421 and Mrk 501

Variability of Mrk 421 and Mrk 501

- unevenly sampled lightcurves, gaps
- each lightcurve has a different sampling, different number of data points

What is the error in F_{var} introduced by this? How many flux measurements are needed to obtain a reliable F_{var} estimate?

- unevenly sampled lightcurves, gaps
- each lightcurve has a different sampling, different number of data points

What is the error in F_{var} introduced by this? How many flux measurements are needed to obtain a reliable F_{var} estimate?

- unevenly sampled lightcurves, gaps
- each lightcurve has a different sampling, different number of data points

What is the error in F_{var} introduced by this? How many flux measurements are needed to obtain a reliable F_{var} estimate?

- unevenly sampled lightcurves, gaps
- each lightcurve has a different sampling, different number of data points

What is the error in F_{var} introduced by this? How many flux measurement are needed to obtain a reliable F_{var} estimate?

- $d = 1 \dots n-2$ flux values removed from each lightcurve
- F_{var} measurements reliable for all but the smallest ($n \leq 10$) samples

- $d = 1 \dots n-2$ flux values removed from each lightcurve
- F_{var} measurements reliable for all but the smallest ($n \leq 10$) samples

Correlations

Mrk 501: no correlation between VHE and X-rays

Conclusions & Outlook

- 2009 MWL campaings on Mrk 421 and Mrk 501
- preliminary results on variability:
 - both sources in low activity state
 - Mrk 421:
 - Fractional variability F_{var} low but significant at all frequencies, largest in X-rays
 - Mrk 501:
 - flare in VHE in May 2009, accompanied by changes in optical polarisation and EVPA
 - Mrk 501: Fractional variability *F*_{var} increases with frequency, largest in VHE due to flare
- Problem of unevenly and unequally sampled lightcurves: first quick test shows that F_{var} is not significantly affected by sampling, gaps and different number of flux measurements
- more detailed analysis of the variability and correlation studies (discrete correlation functions) under way

SED fitting parameters

Mrk 501: Stawarz's code Abdo et al., 2011, ApJ, 727, 129

R [cm]	1.3e17
B [G]	1.5e-2
delta	12.0
η_e	56
γmin	600
s1	2.2
ybrk_1	4.e4
s2	2.7
ybrk_2	9.e5
s3	3.7
γmax	1.5e7

Mrk 421: Finke's code Abdo et al., 2011, ApJ, 736, 131

R [cm]	5.2e16
B [G]	3.8e-2
delta	21.0
η_ e	10
γmin	800
s1	2.2
ybrk_1	5.e4
s2	2.7
ybrk_2	3.9e5
s3	4.7
γmax	1.0e8

- removed block of m consecutive flux measurements, $m=n^{1/3}$
- somewhat larger errors

- removed block of m consecutive flux measurements, $m=n^{1/3}$
- somewhat larger errors

