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2009 Breakthrough of the year
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Opening Up the Gamma Ray Sky

LIKE A LIGHTHOUSE BLINKING IN THE NIGHT, A
pulsar appears to flash periodically as itspins
in space, sweeping a double cone of electro-
magnetic radiation across the sky. Since the
discovery of the first pulsar 4 decades ago,
astronomers have detected hundreds more
of these enigmatic objects from the pulsing
radio waves they emit. Now, astronomers
have opened a new channel of discovery—
the highly energetic gamma ray spectrum—
to find pulsars that radio observations could
not detect. The advance, part of a torrent of
recent gamma ray observations, is giving
researchers an improved understanding of
how pulsars work, along with a rich haul of
new pulsars that could help in the quest to
detect gravitational waves.

The findings come from the Fermi
Gamma-ray Space Telescope, which has
been mapping the gamma ray universe
since it was launched by NASA in June
2008. Combing through data the telescope
collected in its first few months, an inter-
national team discovered |6 new pulsars;
strong gamma ray pulsations from eight

previously known pulsars with spin times
of milliseconds, proving that these objects
pulse brightly at gamma wavelengths as
well as in the radio range; and high-energy
gamma rays from the globular cluster 47 Tuca-
nae indicating that the cluster harbors up to
60 millisecond pulsars.

Those Fermi results might be just the
beginning. Armed with their new knowledge
of pulsar behavior, researchers are checking
whether some ofthe unidentified gamma ray
sources Fermi has detected might be pulsars.
In November alone, teams of astronomers in
the United States and France discovered five
new millisecond pulsars by training ground-
based radio telescopes on candidate objects
Fermi had pointed out—a much more tar-
geted search technique than scanning the sky
blindly with ground-based radio telescopes.

Gamma ray beams of pulsars are believed
tobe wider than their radio beams, soinprin-
ciple a space-based gamma ray telescope
should be more likely to encounter and dis-
cern a pulsar’s sweep than a radio telescope
on Earth is. However, Fermi’s forerunner—

the Compton Gamma Ray Observatory,
which flew from 1991 to 2000—did nothave
much luck finding these objects. What has
made the difference is Fermi’s high sensitiv-
ity, which enables it to detect pulsations that
would have been too faint for Compton.
Already, thediscoveries are shedding new
light on the physics of pulsars. Researchers
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months of LAT data

 Of the 46, 16 resulted from blind searches, and 24
were discovered using ephemerides from radio

monitoring®, including 8 MSPs
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Green: Young radio-selected pulsars
Yellow: Young gamma-selected pulsars

Cyan: gamma-selected radio MSPs

8 new gamma selected pulsar, several new radio PSRs,
Several of the newly detected msec PSRs
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Radio-loud versus Radio-quiet.
(Until Fermi, "Geminga" was the only gamma-loud, radio-quiet pulsar.)
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Forget optical emission
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GEMINGA (2CG 195+04)
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The power of X-ray Astronomy



X-ray vs gamma emission from

» Classical (radi
- msec PSR

behaving same way?




Gamma vs X-ray behaviour

* Averaged fluxes * Light curves
Averaged spectra * Phase-resolved
spectra

Standard analysis is needed

In gamma-rays > LAT catalogue

In X-rays - a re-analysis of the entire data base
Martino Marelli PhD thesis



X-ray menu

* No observation

» Exploratory Obs.
* Good spectral analysis
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* Excellent spectral analysis

SWIFT
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XRT image of J0633
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XRT image of J1741
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XRT image of J1813
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XRT image of J1958
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Archival searches: J2032
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X-ray menu

* No observation

» Exploratory Obs.
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3FG 1183545918 a k.a. "Next Geminaa”
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X-ray menu

* No observation

» Exploratory Obs.
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CTA 1 XMM observation
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CTA 1 NS spectum
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X-ray menu

* No observation

» Exploratory Obs.
* Good spectral analysis
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* Excellent spectral analysis
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The three musketeers

, Geminga PSR0656+14

PSR1055-57

S p.n. 35 ksec | PN 60 ksec

120,000 ph | 82,000 ph
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F IF, vs E

gamma

Large scatter for NSs with similar Erot

(note that the ratio does not depend on
distance uncertainty)

Radio loud pulsars seem to have lower
ratio than radio quiet ones (i.e. radio quiet
are underluminous in X-rays).

Observational biases should also be
considered



