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Currently, we have (a) good understanding of (the) overall
electromagnetic structure of (the) pulsar magnetosphere

and

Large scale kinetic modeling of the magnetosphere is required

Maxim Lyutikov 2016
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ldeal Magnetospheres
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ldeal Magnetospheres
with particle tracing
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Dissipative Magnetospheres
with finite conductivity o

FFE Inside Dissipative Outside
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“Ab initio” Magnetospheres

- Electronic HE radiation - - Positronic HE radiation -
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Dissipative Magnetospheres
in Aristotelian Electrodynamics
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Pulsar Efficiency

Andrei Gruzinov
CCPP, Physics Department, New York University, 4 Washington Place, New York, NY 10003

ABSTRACT

Pulsar efficiency, defined as the ratio of the pulsed bolometric luminosity to the spin-down
power, is calculated to be &~ 15% (averaged over the spin-dipole inclination angle, ranging between
~ 50% for the aligned and =~ 10% for the orthogonal). We also estimate the characteristic photon
energy and argue that our results agree with the Fermi pulsar catalog — in a sense.



AB INITIO PULSAR MAGNETOSPHERE: THREE-DIMENSIONAL PARTICLE-IN-CELL
SIMULATIONS OF AXISYMMETRIC PULSARS

ALEXANDER A. PHILIPPOV AND ANATOLY SPITKOVSKY
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Received 2013 December 19; accepted 2014 March 15; published 2014 April 4

Also, we find little evidence for dramatic
dissipation of Poynting flux beyond the light cylinder (unlike
Gruzinov 2012 and Contopoulos et al. 2013), a conclusion that is
likely to only strengthen with improved current sheet resolution.

Particle acceleration in axisymmetric pulsar current sheets

Benoit Cerutti*7, Alexander Philippov, Kyle Parfrey and Anatoly Spitkovsky

Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA.

We find that about 30%
of the outgoing Poynting flux is dissipated in the current
layer, mostly in the vicinity of the Y-point (Philippov &
Spitkovsky 2014).
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ABSTRACT
In order to investigate the importance of dissipation in the pulsar magnetosphere we
combined Force-Free with Aristotelian Electrodynamics. We obtain solutions that are
ideal (non-dissipative) everywhere except in an equatorial current sheet where Poynt-
ing flux from both hemispheres converges and is dissipated into particle acceleration
and radiation. We obtain significant dissipative losses similar to what is found in global
PIC simulations in which particles are provided only on the stellar surface. We con-
clude that there might indeed exist two types of pulsars, strongly dissipative ones with
particle injection only from the stellar surface, and ideal (weakly dissipative) ones with
particle injection in the outer magnetosphere and in particular at the Y-point.
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J. Plasma Phys., page 1 of 13. © Cambridge University Press 2016

The equatorial current sheet and other
interesting features of the pulsar magnetosphere

. .
Ioannis Contopoulos!?f
IResearch Center for Astronomy and Applied Mathematics, Academy of Athens,
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(Received 3 February 2016; revised 13 April 2016; accepted 13 April 2016)

We want to understand what drives magnetospheric dissipation in the equatorial
current sheet. Numerical simulations have limitations and, unless we have a clear a
priori understanding of the physical processes involved, their results can be misleading.
We argue that the canonical pulsar magnetosphere is strongly dissipative and that a
large fraction (up to 30-40% in an aligned rotator) of the spindown luminosity is
redirected towards the equator where it is dissipated into particle acceleration and
emission of radiation. We show that this is due to the failure of the equatorial electric
current to cross the Y-point at the tip of the corotating zone.



Limitations of numerical simulations

e Lego tiles:

— Light cylinder resolution:
* 2D: 10,000
* 3D: 100
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Limitations of numerical simulations

e Lego tiles:

— Light cylinder resolution:
* 2D: 10,000
* 3D: 100
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Limitations of numerical simulations

e Lego tiles:
— Light cylinder position:
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Cerutti et al. 2015



Limitations of numerical simulations

* Lego tiles:
— Light cylinder position:
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Limitations of numerical simulations

e Death stars:
— paGl, Jal=paic

— Jekr is a global quantity

(nothing to do with Jas) AR S
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Limitations of numerical simulations

Death stars:

— pGJ, JGI=paGIcC

— Jekr is a global quantity (nothing to do with Jas)
Density floors

PIC simulations: “billiard balls”

Numerical treatment of CS: “trade secrets”

| needed to return to the drawing board
and reconsider the global picture
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What drives dissipation?
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What drives dissipation?
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What drives dissipation?
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SMS dissipation?
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Sironi, Spitkovsky, Arons 2013

UmaxPetschek ~ (TE/ 3 In Rm)c

Cowley 1985
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Rotation Axis




The Y-point

Bp, Ep, 0, all three vanish right outside the Y-point

It becomes problematic to support a current sheet
through the Y-point, unless B¢ also vanishes there

There is no current sheet that returns to the star

CKF “proved” that the solution that is dissipationless
everywhere is unique and it does contain a
separatrix current sheet

The CKF-type solution cannot be valid anymore, and
the magnetosphere must find a new very different
global equilibrium that is strongly dissipative



Electrostatic
Current Sheet
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Tracked positrons
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It is very hard to support an electric
current sheet through the Y-point
unless
there is pair production at the Y-point



The “Aristotelian” current sheet

ExB B (VxB)+E:(VxE)
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Force-Free Electrodynamics
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E 1 B everywhere
+ zero multiplicity in “AE”

Contopoulos 2016



The “Aristotelian” current sheet

FFE+”AE”: the "Device’

(b)

Contopoulos 2016
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"Weak’ pulsars?
* No pair production at the Y-point

— All particles are provided by the star

* No electric current through the Y-point

Strongly dissipative
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‘Strong’ pulsars?
* Free’ pair production everywhere
— In particular at the Y-point

 CKF-type ideal solution

— Electric current sheet through Y-point

* Weakly dissipative (FFE)

open field lines 9

[1]

closed field lines

Rotation Axis

=
aa
-
: -
; : : 0
open field lines s
=
F
(=9

x/Ric
CKF 1999 and others Philippov & Spitkovsky 2014

2 T 1 2o



1.095390 Hz (uHz)

v

ON OFF ON OFF

o I, P+ f oy T .
54800 55000 55200 55400 55600 55800 56000 56200
Modified Julian Day

The rotational frequency evolution of PSR J1841—0500 (Camilo et al. 2012 and
Lyne, priv. comm.).
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Final remarks

* |tis early for global “ab initio” PIC simulations
e Our proposal:

Combine ideal MHD/FFE global simulations with
focused PIC simulations of the equatorial
current sheet and the Y-point



