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Magnetars: Pulsars with B 1014  G — Not rotation-powered!

Harding 2013
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FIG. 2. Plot of period vs. period derivative for the presently known rotation-powered pulsars, Isolated Neu-
tron Stars (INS), Compact Central Objects (CCO), Rotating Radio Transients (RRATs) and magnetars (from
http://www.atnf.csiro.au/people/pulsar/psrcat/). Lines of constant characteristic age, P/2Ṗ , and dipole spin-down luminosity,
Ėd, are superposed.

the NS zoo. with some having P ⇠ 11 s (the longest pe-
riod of a radio pulsar is about 8 s). The INS have periods
very similar to those of magnetars, also reaching up to 11
s, but with Ṗ and magnetic fields about a factor of ten
lower than those of the lower field magnetars. The CCOs
have very low Ṗ , almost as low as the MSPs, but their
spin periods are more like those of young RPPs. High en-
ergy pulsars (RPPs with X-ray or gamma-ray pulsations)
typically have the highest spin-down power (see Eq [4])
but are not necessarily the youngest, as many of the very
old MSPs are e�cient X-ray and gamma-ray pulsars.

II. ROTATION-POWERED PULSARS

Neutron stars that are spinning down as a result
of torques from magnetic dipole radiation and particle

emission are known as rotation-powered pulsars (RPP).
The energy from their spin down appears as broad-
band pulsations from radio to gamma-ray wavelengths
and as a wind of energetic particles flowing into their
surrounding pulsar wind nebulae. Since the discov-
ery of RPP through their radio pulsations in 1967 [62],
more than 2000 radio pulsars are now known with pe-
riods ranging from a few ms to several seconds [82],
http://www.atnf.csiro.au/people/pulsar/psrcat/). X-
ray, gamma-ray and optical pulsations were soon discov-
ered in a few of these pulsars by folding the time series
obtained at these wavelengths at the radio periods. At
present, there are over 100 RPP detected at X-ray ener-
gies and over 130 gamma-ray pulsars [11]; most were dis-
covered using known radio ephemerides, but many were
also discovered through their X-ray or gamma-ray pulsa-
tions and are radio quiet. The spin down of RPPs is typi-



INTEGRAL/RXTE Spectrum  
for AXP 1RXJS J1708-4009

■ XMM spectrum below 10 
keV dominates pulsed 
RXTE/PCA spectrum 
(black crosses); 

■ RXTE-PCA (blue) + 
RXTE-HEXTE (acqua) and 
INTEGRAL-ISGRI (red) 
spectrum in 20-150 keV 
band is not totally pulsed, 
with E-1. 

■ COMPTEL upper limits 
imply spectral turnover 
around 300-500 keV, 
indicated by logparabolic 
guide curve.

 Den Hartog et al. (2008)



Magnetar Pulse Profiles in Soft and Hard Bands

den Hartog et al. 2008Woods & Thompson 2006



Resonant Compton Cross Section (ERF)

■ Illustrated for photon 
propagation along B 
and the Johnson & 
Lipmann formalism; 

■ In magnetar fields, 
cross section declines 
due to Klein-Nishina 
reductions; 

■ Resonance at cyclotron 
frequency eB/mec; 

■ Below resonance, l=0 
provides contribution; 

■ In resonance, cyclotron 
decay width truncates 
divergence.

 Gonthier et al. 2000 B = 1  =>  B = 4.41 x 1013 G



Polarization Dependence of   
Resonant Compton Cross Section

■ Differential and total cross section depend only on final polarization state of photons; 
■ Perpendicular polarization “extraordinary mode” (E-field ⟘ to plane spanned by k & 

B) exceeds parallel ; 
■ Cooling calculations sum/average over polarization states.

Gonthier 
et al. 2000



ST Cyclotron Decay Lifetimes for the Resonance

■ Cyclotron decay B2 field dependence is muted to B1/2 dependence 
in supercritical fields (e.g. Herold et al. 1982; Latal 1986; Pavlov et 
al. 1991).  These rates set the “cap” on the Compton resonance via 
a width in a Lorentz profile.

Baring, Gonthier  
& Harding (2005)



Spin-dependent rates – the problem 
with Johnson & Lippmann states

Baring, Gonthier & Harding 2005

Sokolov & Ternov states 
(1968) preserve  

separability of the spin 
dependence under 

Lorentz boosts along B.

However, Johnson & 
Lipmann states (1949) 

do not!



JL versus ST states



Compton Upscattering Kinematics

■ Upscattering kinematics is often controlled by the 
criterion for scattering in the cyclotron resonance: there is 
a one-to-one correspondence between final photon angle 
to B and upscattered energy.



Resonant Compton Kinematics



High B Resonant Compton Cooling

■ Resonant cooling is strong for all Lorentz factors γ above the kinematic threshold for its 
accessibility; magnetic field dependence as a function of B is displayed at the right (dashed 
lines denote JL spin-averaged calculations, instead of the spin-dependent ST cross section).  

■ Kinematics dictate the B dependence of the cooling rate at the Planckian maximum. For 
magnetar magnetospheres, Lorentz factors following injection are limited to ~101-103 by cooling.

Baring, Wadiasingh & Gonthier 2011



Thermal Cooling Rates

33

■ Monoenergetic cooling rates integrated over a Planck spectrum; 
■ Resonance is always sampled, and there is a strong dependence on T; 
■ Ingoing versus outgoing electrons alter where the resonance is 

sampled. 



Altitudinal Dependence

36

■ The photon angular distribution changes the altitudinal character of the cooling rate 
at various co-latitudes;  

■ Shown here are the two extreme cases; 
■ The outgoing electrons case at the equator is equivalent to the ingoing electrons 

case due to the symmetry of the photon distribution. 



Resonant Scattering: Orthogonal Projections
■ Black points bound the locii (“green” and “blue”) of final scattered energies 

of greater than εf = 10-0.5 => 160 keV; 
■ For most viewing angles, this is a very small portion of the activated 

magnetosphere for the Lorentz factor and polar field chosen below.



Observer Perspectives and Resonant Scattering Kinematics



Strong polarization at 
high energies

Template(single field loop) Polarization-dependent Spectra
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Radiative Transport γB → e+e-

Story & Baring 2014

Daugherty & Harding 1983

■ Pair creation escape 
energies limits >1 MeV 
photons in magnetars 
based on emission height



Radiative Transport, Magnetic Photon Splitting γB → γγ
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in other sources & Taylor(Manchester 1977 ; Michel 1991),
which assume (inaccurately) that the dipole magnetic
moment rather than for a uniformlyk \ B

0

R3 k \ B
0

R3/2
magnetized sphere of radius R. The other c-ray pulsars have
surface –eld strengths in the range 1È9 ] 1012 G, or 0.02

(the Crab and Vela pulsars have –elds around[ 0.2B
crNote that the attenuation lengths in are for0.2B

cr

). Figure 2
unpolarized radiation ; the curves for p and o polarization
states look very similar.

The curves in have a power-law behavior at highFigure 2
energies, i.e., for attenuation lengths much less than 106 cm,
where the dipole –eld is almost uniform in direction and of
roughly constant strength. They also exhibit sharp increases
at the low-energy end, where photons begin to escape the
magnetosphere without attenuation. We may estimate the
behavior of the power-law portions of the attenuation
length curves in as follows. Since the photons areFigure 2
assumed to initially propagate parallel to the –eld, the –eld
curvature will give propagation oblique to the –eld only
after signi–cant distances are traversed, so that the obliquity
of the photon to the –eld scales, to –rst order, as the dis-
tance traveled, Inserting this insin h

kB
P s. equation (1)

gives a photon-splitting attenuation coefficient Ps6 i.e., an
optical depth Pe5s7, since Inversion then indicatesT

sp

P e5.
that the attenuation length should vary as L P e~5@7 : this is
borne out in For pair productionFigure 2. B

0

Z 0.1B
cr

,
occurs as soon as the threshold is crossedu

th

\ 2/sin h

kB(see during the photon propagation in the magneto-° 2.2)
sphere. Essentially, due to the enormous creation rate
immediately above the threshold, this energy serves as an
impenetrable ““ wall ÏÏ to the photon. Again, since sin h

kB
P s

in the early stages of propagation, the pair production
attenuation length should scale as L P 2/e. These pro-
portionalities hold in both curved and Ñat spacetime, since
general relativistic e†ects distort spacetime in a smooth and
di†erentiable manner (see the Appendix). However, the
attenuation lengths computed in the Schwarzschild metric
are about a factor of 1.5 lower than those computed in Ñat
spacetime & Harding(Baring 1995b).

The photon-splitting attenuation coefficient we have used
is strictly valid only below pair threshold. Hence, the
attenuation lengths for splitting depicted in can beFigure 2
regarded as only being symbolic when they exceed those for
pair production, since then pair threshold is reached before
splitting occurs. No technically amenable general expres-
sions for the rate of splitting above pair threshold exist in
the physics literature. But the vicinity of parameter space
just below pair threshold is the regime of importance for
c-ray pulsar models, where the emitted photons propagate
until they either split or they reach pair threshold, in which
case they pair produce. The attenuation length curves near
the crossover points in for will requireFigure 2 B

0

\ 0.7B
crinclusion of high-energy corrections to the attenuation coef-

–cient that arise as the c ] e`e~ threshold(Stoneham 1979)
is approached. Currently, work is in progress to compute
these modi–cations (Baring & Harding 1997), and prelimi-
nary results indicate that the rate in is quiteequation (1)
accurate for but increases by factors of at most aB [ 0.2B

crfew for and u \ 2, as mentioned in above.B \ 0.7B
cr

° 2.1

2.4. Escape Energies
The energy at which the attenuation length becomes

in–nite de–nes the escape energy, below which the optical

depth is always >1 and photons escape the magnetosphere ;
the existence of such an escape energy is a consequence of
the r~3 decay of the dipole –eld. Escape energies of unpo-
larized photons for both photon splitting and pair pro-
duction are shown in as a function of magneticFigure 3
colatitude h of the photon emission point for di†erent
values of magnetic –eld strength (see also et al.Harding

The escape energies clearly decline with h and are1997).
monotonically decreasing functions of B for the range of
–elds shown. The divergences as h ] 0 are due to the diver-
gence of the –eld line radius of curvature at the poles. There
the maximum angle achieved before the –eld falls o†h

kBand inhibits attenuation is proportional to the colatitude h.
For photon splitting, since the rate in is pro-equation (1)
portional to and therefore also the attenuationu5 sin6 h

kB
,

length L , it follows that the escape energy scales as e

esc

P
h~6@5 near the poles (see also below) as is determinedFig. 5
by the condition L D R. For pair production, the behavior
of the rate (and therefore L ) is dominated by the exponential
form in which then quickly yields a depen-equation (7),
dence near the poles for This behav-e

esc

P h~1 B
0

[ 0.1B
cr

.
ior extends to higher surface –elds because production then
is at threshold, which determines Ate

esc

D 2/h
kB

P h~1.
high –elds, there is a saturation of the photon-B

0

Z 0.3B
cr

,
splitting attenuation lengths and escape energies, due to the
diminishing dependence of B in the attenuation coefficient.
Likewise, there is a saturation of the pair production escape
energy at –elds above which pair production occurs at
threshold. The pair production escape energy curves are
bounded below by the pair threshold 2/sin and mergeh

kBfor high h at the pair rest mass limit, e \ 2, blueshifted by
the factor (1 [ 2GM/Rc2)~1@2 D 1.3. Note that photon
splitting can attenuate photons well below pair threshold.

FIG. 3.ÈEscape energy (i.e., where L ] O in in units ofeq. [11]), m
e
c2,

for photon splitting, averaged over all modes (solid curves) and in the
o ] pp mode only (solid dots), compared to the escape energy for one-
photon pair production (dashed curves), both as functions of magnetic
colatitude h of the emission point on the neutron star surface. These ener-
gies are obtained for three di†erent surface dipole magnetic –eld strengths
and for emission along the –eld The curves diverge near h \ 0,(h

kB,0

\ 0).
where the –eld line radius of curvature becomes in–nite ; these divergences
scale as h~6@5 for splitting and h~1 for pair production (see text and also

The escape energies for each process a monotonically decreasingFig. 5).
functions of B for the range of parameters shown. The escape energies are
averaged over photon polarizations and computed using the Schwarzs-
child metric.

Harding, Baring & Gonthier 1997

■ Resonant ICS — ⟘ dominates || 
at higher energies 

■ Magnetic pair creation, only 
above the 2 mec2 threshold — R 
|| > R ⟘  

■ ⟘ → || || is the only allowed 
mode from kinematic selection 
rules (Adler 1971) when vacuum 
dispersion is small ==> weak 
splitting cascade 

■ CP symmetry of QED allows: ⟘ 
→ || ||, ⟘ → ⟘ ⟘, || → ⟘ || 
==> splitting cascade can be a 
strong attenuation influence
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not yet been included in polar cap model calculations. The
rate of photon splitting increases rapidly with increasing
–eld strength so that it may even be the domi-(Adler 1971),
nant attenuation process in the highest –eld pulsars. There
are several potentially important consequences of photon
splitting for c-ray pulsar models. Since photon splitting has
no threshold, it can attenuate photons below the threshold
for pair production, e \ 2/sin and can thus produceh

kB
,

cuto†s in the spectrum at lower energies. Here is theh

kBangle between the photon momentum and the magnetic
–eld vectors, and e is (hereafter) expressed in units of m

e
c2.

When the splitting rate becomes large enough, splitting can
take place during a photonÏs propagation through the
neutron star magnetosphere before the pair production
threshold is crossed (i.e., before an angle D2/e to the –eld is
achieved). Consequently, the production of secondary elec-
trons and positrons in pair cascades will be suppressed.
Instead of pair cascades, one could have splitting cascades,
where the high-energy photons split repeatedly until they
escape the magnetosphere. The potential importance of
photon splitting in neutron star applications was suggested
by et al. andAdler (1971), Mitrofanov (1986), Baring (1988).
Its attenuation and reprocessing properties have been
explored in the contexts of annihilation line suppression in
c-ray pulsars and spectral formation of c-ray(Baring 1993),
bursts from neutron stars Photon-splitting(Baring 1991).
cascades have also been investigated in models of soft c-ray
repeaters, where they will soften the photon spectrum very
efficiently with no production of pairs (Baring 1995 ; Baring
& Harding & Baring et al.1995a ; Harding 1997 ; Chang
1997a).

In this paper we examine the importance of photon split-
ting in c-ray pulsar polar cap models (it presumably will not
operate in the low –elds of outer gap models). Following a
brief discussion of the physics of photon splitting in we° 2,
present calculations of the splitting attenuation lengths and
escape energies in the dipole magnetic –eld of a neutron
star. A preliminary study Baring, & Gonthier(Harding,

has shown that splitting will be the primary mode of1997)
attenuation of c-rays emitted parallel to a magnetic –eld

G. We then present, in photon-B Z 0.3B
cr

\ 1.3 ] 1013 ° 3,
splitting cascade models for two cases : (1) when only one
mode of splitting (o ] pp) allowed by the kinematic selec-
tion rules operates, suppressing(Adler 1971 ; Shabad 1975)
splitting of photons of parallel polarization (so that they can
only pair produce), but still permitting photons of perpen-
dicular polarization to either split once or produce pairs,
and (2) when the three splitting modes allowed by CP
(charge-parity) invariance operate, producing mode switch-
ing and a predominantly photon-splitting cascade. In ° 4,
model cascade spectra are compared to the observed spec-
trum of PSR 1509[58 to determine the range of magnetic
colatitude emission points (if any) that can produce a spec-
tral cuto† consistent with the data. These spectra have
cuto† energies that are decreasing functions of the magnetic
colatitude. It is found that a reasonably broad range of
polar cap sizes will accommodate the data and that strong
polarization signatures appear in the spectra due to the
action of photon splitting.

2. PHOTON SPLITTING AND PAIR CREATION

ATTENUATION

The basic features of magnetic photon splitting c ] cc

and the more familiar process of single-photon pair creation

c ] e`e~ are outlined in the next two subsections before
investigating their role as photon attenuation mechanisms
in pulsar magnetospheres. Note that throughout this paper,
energies will be rendered dimensionless, for simplicity, using
the scaling factor Magnetic –elds will also often bem

e
c2.

scaled by the critical –eld this quantity will be denotedB
cr

;
by a prime : B@ \ B/B

cr

.

2.1. Photon-Splitting Rates
The splitting of photons in two in the presence of a strong

magnetic –eld is an exotic and comparatively recent predic-
tion of quantum electrodynamics (QED), with the –rst
correct calculations of the reaction rate being performed in
the early 1970s & Bialynicki-Birula(Bialynicka-Birula

et al. Its relative obscurity to1970 ; Adler 1970 ; Adler 1971).
date (compared, e.g., with magnetic pair creation) in the
astrophysical community stems partly from the mathemati-
cal complexity inherent in the computation of the rate.
Splitting is a third-order QED process with a triangular
Feynman diagram. Hence, though splitting is kinematically
possible, when B \ 0 it is forbidden by a charge conjuga-
tion symmetry of QED known as FurryÏs theorem (e.g., see

& Rohrlich which states that ring diagramsJauch 1980),
that have an odd number of vertices with only external
photon lines generate interaction matrix elements that are
identically zero. This symmetry is broken by the presence of
an external –eld. The splitting of photons is therefore a
purely quantum e†ect and has appreciable reaction rates
only when the magnetic –eld is at least a signi–cant fraction
of the quantum critical –eld B

cr

\ m
e
2 c3/(e+) \ 4.413

] 1013 G. Splitting into more than two photons is prohibi-
ted in the limit of zero dispersion because of the lack of
available quantum phase space (Minguzzi 1961).

The reaction rate for splitting is immensely complicated
by dispersive e†ects (e.g., Adler 1971 ; Stoneham 1979)
caused by the deviation of the refractive index from unity in
the strong –eld. Consequently, manageable expressions for
the rate of splitting are only possible in the limit of zero
dispersion and are still then complicated triple integrations
(see and also MilÏshtein, & Shaisulta-Stoneham 1979, Baier,
nov for electric –eld splitting) due to the presence of1986
magnetic electron propagators in the matrix element.
Hence, simple expressions for the rate of splitting of a
photon of energy u in a –eld B were –rst obtained by

& Bialynicki-Birula et al.Bialynicka-Birula (1970), Adler
and in the low-energy, nondispersive(1970), Adler (1971)

limit : The total rate in this limit, averaged overuB/B
cr

[ 1.
photon polarizations & Ritus is express-(Papanyan 1972),
ible in terms of an attenuation coefficient

T
sp

(u) B

a3

10n2

1
È

A 19
315

B
2

B@6C(B@)u5 sin6 h

kB
, (1)

where a \ e2/+c B 1/137 is the –ne-structure constant, È \

is the Compton wavelength of the electron, and+/(m
e
c) h

kBis the angle between the photon momentum and the mag-
netic –eld vectors. Here C(B@) is a strong-–eld modi–cation
factor (derivable, e.g., from eq. [41] of seeStoneham 1979 :

below) that approximates unity when andeq. [5] B > B
crscales as B~6 for B ? B

cr

.
The corresponding di†erential spectral rate for the split-

ting of photons of energy u (with u > 1) into photons of
energies u@ and u [ u@ is

3rd order



Vacuum Birefringence => Crystal “optical axis” <—> local B direction

■ Virtual magnetic pair creation 
(dominant contribution) and other 
QED diagrams make the vacuum 
birefringent perpendicular to B 

■ Polarizations can get mixed/
rotated as they propagate out, 
depending on the path! 

■ Vacuum: n|| > n⟘ typically for 
most magnetar regimes 

■ Plasma effects also mix states 
■ Need a soft γ-ray polarimeter with 

good energy and time resolution to 
disentangle emission geometry, 
reaching down to 50-100 keV

and the Legendre series to efficiently compute the integrals.
This second alternative appears to be the more expedient
algorithm.

IV. DISCUSSION: THE INFLUENCE OF
VACUUM DISPERSION

The presentation here has restricted considerations
throughout to nondispersive situations where photons move
at speed c, i.e., ω ¼ jkjc. In material media, plasma, and
also in the presence of strong large-scale electromagnetic
fields, this is only an approximation: dispersion arises
and can potentially offer significant modifications to QED
mechanisms. Plasma dispersion can be neglected in neutron
star magnetospheres, since the density of charges is
sufficiently low that the plasma frequency ωp is in the
radio-to-infrared band of frequencies, so that x rays and
gamma rays propagate essentially in a nondispersive
manner: the refractive index np induced by the plasma
scales roughly as ðωp=ωÞ2. The situation is very different
for vacuum dispersion, and so it will form the focus of this
discussion.
It is instructive to assess when corrections to the photon

scattering dynamics due to vacuum dispersion or birefrin-
gence effects become important. It has been understood for
decades that the magnetized vacuum is dispersive, so
photons travel at phase speeds differing from c; these
speeds differ for propagation parallel and oblique to the
field because of the anisotropy of the polarization tensor
Πμν. The dispersion relation necessarily attains the form

ω2

c2
¼ k2z þ F ðk2⊥Þ; ð96Þ

where the restriction F ð0Þ ¼ 0 expresses the property that
dispersion is zero for propagation along B. The dispersion
arises because spontaneous photon conversion (absorption)
processes are permitted in QED in the presence of an
external electromagnetic field. The leading order contribu-
tion in strong magnetic fields to dispersion is magnetic pair
creation, γ → eþe−, so one naturally anticipates that
dispersion can become significant in supercritical fields
B≳ Bcr, and is of the order of αf , the fine-structure
constant. Since pair threshold is never exceeded for photon
propagation along the field, such photons must travel
dispersion-free, with a refractive index identical to unity.
The polarization tensor and refractive index for the mag-
netized vacuum could, in principal, be obtained from the
pair creation rate via the optical theorem. However, the
standard path of choice is to directly compute the polari-
zation tensor by some technique, and often this employs the
effective Lagrangian or Schwinger proper-time approach
[50,58,59]. The refractive index can be expressed in the
approximate form

n⊥;∥ ¼ 1þ αf
4π

sin2θN⊥;∥ðω sin θ; BÞ; ð97Þ

where the functions N⊥;∥ are relatively manageable double
integrals that are dimensionless. Here ω sin θ < 2 is
assumed; dispersion accessing pair channels will be dis-
cussed shortly. As in the rest of the paper, the magnetic field
is expressed here in units of the Schwinger field Bcr. When
the photons propagate at a nonzero angle θ to the magnetic
field, the two polarization modes propagate with different
speeds, and the magnetized vacuum is birefringent.
In the regime of photon energies well below pair creation

threshold (practically, this is ω⊥ ¼ ω sin θ ≲ 0.3), these
integrals distill down to a single integral. For low and
high field regimes, the resulting integral can be evaluated
analytically (e.g., see Appendix D.5 of [60]). Accordingly,
in the B ≪ 1 subcritical domain, the refractive indices
possess the asymptotic forms given in Eq. (46) of [50] or
Eq. (9) of [58]:

n⊥ ≈ 1þ 2αf
45π

B2sin2θ;

n∥ ≈ 1þ 7αf
90π

B2sin2θ; B ≪ 1: ð98Þ

Observe that the labeling convention that [50] employed
was reversed from that used here and elsewhere (e.g., [58]):
again, here we ascribe the subscripts ⊥; ∥ according to the
orientation of a photon’s electric field vector relative to its
momentum k and the large-scale field B. The convention
Adler [50] adopted was defined by the photon’s magnetic
field vector orientation.
The other low-frequency asymptotic limit of Eq. (97) is

for B ≫ 1, but with ω⊥ small enough that ω⊥B ≪ 1. The
appropriate forms for the refractive index can be deduced
from Eq. (38) of [58] or Eq. (2.97) of [60]:

n⊥ ≈ 1þ αf
6π

sin2θ;

n∥ ≈ 1þ αf
6π

Bsin2θ; B ≫ 1: ð99Þ

These limiting forms need to be modified when ω⊥B≳ 1.
For example, when ω⊥B ≫ 1 but ω⊥ ≪ 1, Eq. (10) of [58]
illustrates that the refractive index is slightly less than
unity so that the eigenmode phase speeds exceed c.
Notwithstanding, Eqs. (98) and (99) serve to illustrate
the general character of the refractive index of the mag-
netized vacuum for a large portion of parameter space
below pair creation threshold, the domain of relevance to
this presentation.
It is immediately apparent that vacuum dispersion and

birefringence both disappear for photon propagation along
the magnetic field, θ ¼ 0, the restriction in this paper for
the incoming photons in the ERF. In addition, the ⊥ mode
always possesses a refractive index very close to unity, with
ðn⊥ − 1Þ < αf=6π ≲ 10−3. In contrast, these asymptotic
results indicate that the ∥ mode can realize significant
departures of n∥ from unity when B≳ 2π=αf ∼ 103,

COMPTON SCATTERING IN STRONG MAGNETIC FIELDS: … PHYSICAL REVIEW D 90, 043014 (2014)

043014-25

and the Legendre series to efficiently compute the integrals.
This second alternative appears to be the more expedient
algorithm.

IV. DISCUSSION: THE INFLUENCE OF
VACUUM DISPERSION

The presentation here has restricted considerations
throughout to nondispersive situations where photons move
at speed c, i.e., ω ¼ jkjc. In material media, plasma, and
also in the presence of strong large-scale electromagnetic
fields, this is only an approximation: dispersion arises
and can potentially offer significant modifications to QED
mechanisms. Plasma dispersion can be neglected in neutron
star magnetospheres, since the density of charges is
sufficiently low that the plasma frequency ωp is in the
radio-to-infrared band of frequencies, so that x rays and
gamma rays propagate essentially in a nondispersive
manner: the refractive index np induced by the plasma
scales roughly as ðωp=ωÞ2. The situation is very different
for vacuum dispersion, and so it will form the focus of this
discussion.
It is instructive to assess when corrections to the photon

scattering dynamics due to vacuum dispersion or birefrin-
gence effects become important. It has been understood for
decades that the magnetized vacuum is dispersive, so
photons travel at phase speeds differing from c; these
speeds differ for propagation parallel and oblique to the
field because of the anisotropy of the polarization tensor
Πμν. The dispersion relation necessarily attains the form

ω2

c2
¼ k2z þ F ðk2⊥Þ; ð96Þ

where the restriction F ð0Þ ¼ 0 expresses the property that
dispersion is zero for propagation along B. The dispersion
arises because spontaneous photon conversion (absorption)
processes are permitted in QED in the presence of an
external electromagnetic field. The leading order contribu-
tion in strong magnetic fields to dispersion is magnetic pair
creation, γ → eþe−, so one naturally anticipates that
dispersion can become significant in supercritical fields
B≳ Bcr, and is of the order of αf , the fine-structure
constant. Since pair threshold is never exceeded for photon
propagation along the field, such photons must travel
dispersion-free, with a refractive index identical to unity.
The polarization tensor and refractive index for the mag-
netized vacuum could, in principal, be obtained from the
pair creation rate via the optical theorem. However, the
standard path of choice is to directly compute the polari-
zation tensor by some technique, and often this employs the
effective Lagrangian or Schwinger proper-time approach
[50,58,59]. The refractive index can be expressed in the
approximate form

n⊥;∥ ¼ 1þ αf
4π

sin2θN⊥;∥ðω sin θ; BÞ; ð97Þ

where the functions N⊥;∥ are relatively manageable double
integrals that are dimensionless. Here ω sin θ < 2 is
assumed; dispersion accessing pair channels will be dis-
cussed shortly. As in the rest of the paper, the magnetic field
is expressed here in units of the Schwinger field Bcr. When
the photons propagate at a nonzero angle θ to the magnetic
field, the two polarization modes propagate with different
speeds, and the magnetized vacuum is birefringent.
In the regime of photon energies well below pair creation

threshold (practically, this is ω⊥ ¼ ω sin θ ≲ 0.3), these
integrals distill down to a single integral. For low and
high field regimes, the resulting integral can be evaluated
analytically (e.g., see Appendix D.5 of [60]). Accordingly,
in the B ≪ 1 subcritical domain, the refractive indices
possess the asymptotic forms given in Eq. (46) of [50] or
Eq. (9) of [58]:

n⊥ ≈ 1þ 2αf
45π

B2sin2θ;

n∥ ≈ 1þ 7αf
90π

B2sin2θ; B ≪ 1: ð98Þ

Observe that the labeling convention that [50] employed
was reversed from that used here and elsewhere (e.g., [58]):
again, here we ascribe the subscripts ⊥; ∥ according to the
orientation of a photon’s electric field vector relative to its
momentum k and the large-scale field B. The convention
Adler [50] adopted was defined by the photon’s magnetic
field vector orientation.
The other low-frequency asymptotic limit of Eq. (97) is

for B ≫ 1, but with ω⊥ small enough that ω⊥B ≪ 1. The
appropriate forms for the refractive index can be deduced
from Eq. (38) of [58] or Eq. (2.97) of [60]:

n⊥ ≈ 1þ αf
6π

sin2θ;

n∥ ≈ 1þ αf
6π

Bsin2θ; B ≫ 1: ð99Þ

These limiting forms need to be modified when ω⊥B≳ 1.
For example, when ω⊥B ≫ 1 but ω⊥ ≪ 1, Eq. (10) of [58]
illustrates that the refractive index is slightly less than
unity so that the eigenmode phase speeds exceed c.
Notwithstanding, Eqs. (98) and (99) serve to illustrate
the general character of the refractive index of the mag-
netized vacuum for a large portion of parameter space
below pair creation threshold, the domain of relevance to
this presentation.
It is immediately apparent that vacuum dispersion and

birefringence both disappear for photon propagation along
the magnetic field, θ ¼ 0, the restriction in this paper for
the incoming photons in the ERF. In addition, the ⊥ mode
always possesses a refractive index very close to unity, with
ðn⊥ − 1Þ < αf=6π ≲ 10−3. In contrast, these asymptotic
results indicate that the ∥ mode can realize significant
departures of n∥ from unity when B≳ 2π=αf ∼ 103,
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