

The variety of sources in LAT data

Elizabeth Ferrara Fermi Science Support Center

2011 Fermi Summer School May 31 - June 10

LAT Data Set

 The LAT data consists of events from numerous different astrophysical sources + multiple sources of background

- Finding point sources in the LAT dataset is an iterative process
- → 1. Generate seed positions
 - 2. Simultaneously fit putative sources plus background
 - 3. Apply cut to remove sources that are not significant
 - 4. Look at residuals to find new candidate sources
 - 5. Iterate
- All-sky analysis is too computer-intensive
 - Requires sky be divided into "manageable" regions
 - Source extension or spectral shape can add to the complexity

Spectral shape is a contributing factor in whether or not a source is significantly detected

Use log parabola or broken power law if it gives a better fit

- Sources are considered associated when their positions coincide with <u>plausible</u> gamma-ray-producing objects
 - Association technique is a Bayesian probability analysis based on the local density of sources from catalogs of likely objects
 - Average 95% uncertainty radius is about 7 arcmin
 - Too large in most cases to claim identification based on position
- Some LAT sources are firmly identified
 - Periodic signals, spatial morphology, or correlated variability with objects known at other wavelengths

- Some events affect the ability of the instrument to acquire data
 - In general, these events will be filtered out by the event classification process
 - Use the recommended data cuts to eliminate undesired effects
- Solar Flares
 - Seen by EGRET
 - Can last for many minutes to hours
 - Will become more prevalent as the solar cycle continues
 - As the Sun is a moving source, it can affect many other sources

March 7, 2011 Solar Flare

Unlocalized Events - 2

- Terrestrial Gamma-Ray Flashes (TGFs)
 - Several-microsecond events associated with thunderstorms on the Earth
 - Two types seen by GBM
 - Not currently detected by the LAT

- Extragalactic Transients: Gamma-Ray Bursts (GRBs)
 - Rapid, very energetic events at extreme distances
 - Very short timescales (seconds to 100s of seconds)
 - Seen frequently by GBM (~550)
 - A subset of these are seen by the LAT (27)
 - Must have a high-energy component
 - Must be within the LAT field of view (FOV)
 - Can affect analysis if near the source of interest

Circles: In Field-of-view of LAT (<70°): 275 Out of the FOV Squares: LAT detections

- Galactic Transients:
 - Several Galactic transients have been seen by the LAT since Fermi started science operations
- Nova V407 Cyg symbiotic binary
 - Explosion into surrounding medium generated a shock front that generated gammas
 12

Blazars

• The most numerous class in the LAT data by far!

- Blazar detection is affected by both spectral and temporal characteristics
 - BL Lacs and FSRQs have spectral peaks in different energy ranges (spectral index varies widely)
 - Flux varies significantly with time

Other AGN

- Blazar Candidates
 - Blazar associations use a 'figure of merit'
 - Candidate sources have radio detections that look like blazars
 - But require additional follow-up to be able to calculate the FOM
- Narrow-Line Seyfert 1s
 - Three of these sources show LAT emission
- Radio Galaxies
 - Currently 4 of these sources are showing LAT emission
 - Centaurus A radio lobes are fully resolved by the LAT

- Highly energetic pulsars have long been known to be gammaray emitters
 - Typically discovered by applying known radio ephemerides to the gamma rays
 - Can also be discovered in the gamma-ray data (26 with LAT)

Recycled Pulsars

- Over time young energetic pulsars slow down
 - Power for pulsations comes from rotation
 - Once energetics are no longer favorable, pulsations cease
- Pulsars in binaries can get a second life through mass transfer
 - Increase in angular momentum produces millisecond periods and high energetics

14

- Indeed a number of new millisecond pulsars have been found in the LAT data
 - Discovered by radio searches in LAT sources that lack counterparts
 - Significant increase in Galactic MSPs known (~60 +33 new)

- The LAT-detected pulsars are typically referred to by their discovery method
 - Radio-selected used known radio ephemerides to find the LAT pulsations
 - Gamma-selected were discovered by folding the gammaray data (blind searches), and are usually radio-quiet (or very radio-faint)
 - LAT MSPs were all found using radio ephemerides
 - Current blind search techniques are not sensitive to millisecond periods
- Also 23 'radio-only' MSPs
 - Discovered in the radio by looking at LAT sources
 - Takes 6 months to a year to get a good timing solution
 - May soon be LAT pulsars

Radio Pulsars
 Gamma Pulsars
 LAT MSPs

- Some globular clusters have long been known to contain numerous MSPs
 - LAT detects 11 sources coincident with globular clusters
 - In one instance (J1823-3021A) a single luminous gammaray pulsar has been found to be responsible for the entire LAT-detected emission from the cluster

17

- The LAT detects periodic signals from four HMXBs:
 - Cyg X-3
 - LS 5039
 - LSI +61 303
 - 1FGL 1018.6-5856 (new discovery!)
- LSI +61 303 orbital signal appears to have slowly disappeared since the beginning of science operations

Folded light curve in 6-month intervals

Supernova Remnants / Pulsar Wind Nebulae

- Third most numerous class behind blazars and pulsars
 - 60 SNRs/PWNe in a very narrow distribution
 - Some positively identified by matching their extension to other wavelengths

• The Crab pulsar + SNR is used as a calibration source in high-

Spatially Extended Sources

Extended Source	Spatial Form	Spectral Form
SMC	2D Gaussian	Exp Cutoff PL
\mathbf{LMC}	$2D Gaussian^{a}$	Exp Cutoff PL
IC 443	2D Gaussian	Log Parabola
Vela X	Disk	Power Law
Centaurus A (lobes)	Contour Map	Power Law
MSH 15-52	Disk	Power Law
W28	Disk	Log Parabola
W30	Disk	Log Parabola
HESS J1825-137	2D Gaussian	Power Law
W44	Ring	Log Parabola
W51C	Disk	Log Parabola
Cygnus Loop	Ring	Exp Cutoff PL

Extended Source Templates

Extended Source Uncertainties

- The templates for the 12 sources that are spatially extended are approximations based on our best current knowledge
 - Analysis of regions around such sources can leave residuals that look like point sources (and in some cases may be)
 - For example, there are 7 point sources in the vicinity of the Large Magellanic Cloud. 3 of these have blazar/radio source associations, but 4 do not and could be artifacts.

LAT LMC map with overlay showing 2 component template and nearby sources

- Eta Carina (colliding wind binary)
- Starburst Galaxies
- Solar System bodies Moon and quiescent Sun

• That's a lot of different types of sources!!

Classifications - 2FGL

- There is a concentration of sources at low Galactic latitudes toward the inner Galaxy
 - Results in sources close enough to each other that their Point Spread Functions (PSFs) overlap
 - Particularly significant at lower energies, so affects soft sources more
- Parts of the sky away from the Galactic Plane show little impact

Counts map E > 1 GeV

- There is a concentration of sources at low Galactic latitudes toward the inner Galaxy
 - results in sources close enough to each other that their Point Spread Functions (PSFs) overlap
 - Particularly significant at lower energies, so affects soft sources more
- Parts of the sky away from the Galactic Plane show little impact

Counts map E > 1 GeV

- There are many sources in the Galactic Center region
 - Many overlapping PSFs
 - Lots of soft-spectrum sources
 - The diffuse model shows some residuals compared to the large-scale diffuse emission observed in this region
- LAT catalog results for the region around the Galactic Center should be considered a good first approximation rather than a comprehensive analysis.

32-months of LAT Sources

~ Movie ~

- The Upcoming 2FGL catalog has 1888 sources: ۰
 - Extragalactic Sources
 - 44% are AGN (832)
 - 14% are 'Candidate AGN' (268)
 - <1% are 'Other Galaxies' (7)
 - Galactic Sources
 - 6% are Pulsars (114)
 - 3% are SNRs/PWNe (60)
- All numbers still preliminary! <1% are Globular Clusters (11)
 - <1% are Binary Systems (4)
 - Total = 1296 sources
- The remaining 592 sources are still not associated!! ٠

Classifying Unassociated Sources

Samma-rav

Can attempt to use the gammaray spectral and temporal properties to determine likely source class for these 592 sources

Is that all we see?

• The point sources comprise only a subset of the data

LAT counts above 300 MeV

Sources, 2FGL early version

What remains is 'Background'

LAT counts minus sources

- The Earth's limb is *bright* in gamma-rays!
 - -Secondary gamma rays from cosmic ray interactions in the Earth's atmosphere
 - At Fermi's altitude, the limb is ~113 deg from zenith
 - -Far brighter than celestial sources
 - Need to remove limb gammas from analysis of celestial sources
 - Do geometry cut (standard recommendation)
 - -e.g. cut on zenith angle

Abdo et al. 2009, Phys Rev D, 80, 122004

- Some leakage can happen even after excluding events close to the limb
 - Residual limb photons can be seen at the celestial poles at low energies (low energy = large PSF)
 - Can be fitted as a separate background template
 - Time-variable contribution, so average contribution may not be appropriate for time-series analysis

Galactic Diffuse Component(s)

LAT counts minus sources

- Still a lot of detail in the remaining emission
- Need to account for large-scale structure
 - Requires modeling to remove
 - HI tracks ionized Hydrogen
 - CO is a tracer for neutral H₂

Deconstructing the Diffuse

~ Movie ~

The new structure consists of enormous bubbles extending about 50° north and south of the galactic center.

Su, Slayter and Finkbeiner, 2010

Deriving the extragalactic diffuse spectrum

Gamma-ray Space Telescope

More on Saturday

- Much, but not all, of the IGRB is accounted for
 - May provide cosmological clues

What Doesn't the LAT See?

- Seyfert Galaxies
 - They're AGN, why aren't they seen?
- Galaxy Clusters
 - Filled with great targets for cosmic rays, why aren't they seen?
- Accreting X-ray Pulsars, Magnetars
 - Seen by GBM, extreme physics, why aren't they seen?

Dark matter searches: Nothing Yet

Photon statistics just beginning to reach the levels where predictions indicate DM may be detectable

Pre-launch estimates of sensitivities published in Baltz et al., 2008, JCAP 0807:013 [astro-ph/0806.2911]

Summary

- The LAT sees a huge variety of different source types
 - Short and long timescales
 - Variety of spectral forms.
- One person's 'background' is another person's 'source of interest!'

 Separating point sources from each other and from the diffuse background is an on-going challenge

- Fermi is a significant discovery machine!
 - More of everything Gamma

New Galactic Structures

Many new source types