

Fermi LAT Overview

Fermi Summer School June 2011

- Overview of LAT & LAT Event Processing
- Detector Subsystems
 - TRK
 - CAL
 - ACD
 - Trigger and Filter
- Event Reconstruction (Talk next week)
 - Sub-systems reconstruction
 - Event level analysis
- IRFs and ScienceTools (Talk Friday)

Salient Features of the LAT

Tracker (TKR): 18 Si bi-layers Front- 12 layers (~60% X_o) Back- 6 layers (~80% X_o)

Angular resolution ~2x better for front *Many EM showers start in TKR* **Anti-Coincidence Detector (ACD):**

ε = 0.9997 for MIPs
Segmented: less self-veto when good direction information is available

Calorimeter (CAL): 8 layers (8.6 X_o on axis)

∆E/E ~ 5-20% Hodoscopic, shower profile and *direction* reconstruction above ~200 MeV **Trigger and Filter**

Use fast (~0.1 μ s) signals to trigger readout and reject cosmic ray (CR) backgrounds *Ground analysis uses slower* (~10 μ s) shaped signals

Single Event Gallery

Green Lines = Strip hits , Green Crosses = TKR hits on track, Blue lines = TKR trajectories Grey Boxes = CAL log hits , Red crosses = Reconstructed CAL energy deposits Yellow Line = Incoming photon direction

A good photon event

A Marginal Event

Event Reconstruction:

Track finding and fiducial cuts

Event Selections: Ground software uses all signals and detailed analysis to reject CR (~few Hz) Validation

Sample

Photon Event

Classes

prescale

Several pre-scaled samples of events rejected at various stages of analysis

- Provide a description of the instrument
- Done in context of likelihood fit
 - Can extract information needed for aperture photometry

Effective Area:	Point Spread Function
Area x efficiency for physicists	Direction resolution for physicists
Aperture size x effic. for astronomers	Image resolution for astronomers
$A_{eff}(E,\theta,\phi)$	$P(\theta', \phi'; E, \theta, \phi) = P(\delta \mathbf{v}; E, \mathbf{v})$
Energy Dispersion	Residual Particle Background
Energy resolution for physicists	Not really an IRF, absorbed into
Spectral resolution for astronomers	template for isotropic γ -ray flux
$D(E'; E, \theta, \phi) = D(\Delta E/E; E, \theta, \phi)$	$\nu F(\nu)$ or E dN(E)/dE

SILICON TRACKER

Images of the TKR

18 bi-layers, (x,y planes)

12 Layers thin $(0.03 X_0)$ Tungsten 4 Layers thick $(0.12 X_0)$ Tungsten 2 Layers no Tungsten

Width: 400 μ m, Pitch 256 μ m Point Resolution ~ pitch / sqrt(12)

TKR Roles

- Primary Roles:
 - Direction reconstruction
 - Main event trigger
- Other roles:
 - Projection to CAL, ACD
 - Background rejection
 - pair-conversion
 - conversion vertex found?
 - (pre-)shower topology, e⁺e⁻ versus hadrons
 - specific backgrounds
 - backsplash from CAL
 - Up-going heavy ions stopping in TKR

Operating the TKR

Timing

Digital hold and delay counters, offset shaping time constants. "Set and forget"

Electronics Calibrations

Threshold: tune each readout section to trigger at about 0.25 x MIP Noise Occupancy: identify and mask off bad channels

Offline Calibrations

ToT: Convert Time over Threshold (ToT) to MeV equivalent Module alignment: positional & angular offsets of each Si wafer LAT-Spacecraft alignment: angular offsets of LAT relative to start trackers

Samma-ray

CSI CALORIMETER

Images of the CAL

12 * 8 * 16 logs

Light readout at both ends, get long. position to ~cm from light ration

4 readout ranges (2 MeV – 100 GeV)

- Primary Roles:
 - Energy reconstruction
 - Contributes to event trigger
- Other Roles:
 - "Energy Flow" axis at high energy
 - Seeds tracker pattern-recognition in complicated events
 - Background rejection
 - Shower topology e⁺e⁻ versus hadrons
 - Specific backgrounds
 - Up-going particles
 - Backsplash
 - Projection to ACD

Timing

Digital hold and delay counters, offset shaping time constants. "Set and forget"

Electronics Calibrations

Pedestals: electronic signal in absence of physics Thresholds: provide hardware triggers at 100MeV, 1GeV Zero-suppression: provide readout threshold at 2MeV

Offline Calibrations

Proton/ MIP: convert signal to MeV (MIP as reference) Asymmetry: position information along length of crystal from light asymmetry Inter-range: cross calibrate readout ranges

Sermi Improving the energy resolution for specific case

The calorimeter energy resolution improves substantially if catch more of the shower in the CAL

Gamma-ray Space Telescope

On axis = 8.6 X_0 of material in CAL

At 500 GeV -> significant leakage out the back of the CAL

For e⁺e⁻ spectra, much higher statistics, can make special selection of events with long path in CAL

ANTI-COINCIDENCE DETECTOR

Images of the ACD

89 Tiles (25 + 4 * 16) 8 Ribbons to cover gaps

2 PMT for each tile/ ribbon Tiles (~20 p.e.) Ribbons (~3-8 p.e.)

2 readout ranges < 0-8 MIP (Standard) > 8-1000 MIP (Heavy Ions)

- Primary Roles:
 - Offline background rejection
 - Hardware & onboard filter veto
- Other Roles
 - Identifying Heavy Ion (C,N,O + up) calibration events

Timing

Digital hold and delay counters, offset shaping time constants. "Set and forget"

Electronics Calibrations

Electronics pedestals Zero Suppression: provide readout threshold at pedestal + 5x electronics noise Thresholds: provide hardware veto at 0.4 x MIP, 30 x MIP

Offline Calibrations

MIP Calibration: Convert pulse height to MeV equivalent (MIP as reference) Carbon Calibration: Convert large pulses to MeV equivalent (C as reference) Inter-range calibration: Match readout in low (< 8 MIPs) to high (> 8 MIPs) range

TRIGGER AND FILTER

- Primary Role:
 - Trigger readout of the LAT
 - Hardware trigger: Reduce readout rate to be manageable
 - From 5-10 kHz down 1-2 kHz
 - Onboard filter: Reduce downlink rate
 - From 1-2 kHz down to 300-500 Hz
- Other Roles:
 - Provide calibration and diagnostic samples
 - MIPs, Heavy Ions, periodic triggers, leaked prescalers

Hardware Trigger Components

TKR: Tracker 3 in a row

Three consecutive tracker layers have a signal. Active above about 10-30 MeV Generates Trigger Request

CAL-HI: High Energy CAL

Any single CAL channel has energy about 1 GeV. Active above about 10 GeV Generates Trigger Request

CAL-LO: Low Energy CAL

Any single CAL channel has energy about 100 MeV. Active above about 1 GeV ROI: ACD Veto

TKR && ACD tile in tracker ROI has signal above 0.4 x MIP.

CNO: ACD Heavy Ion (C,N,O)

ACD tile in tracker ROI has signal above 30 x MIP.

Periodic: 2 Hz cyclic Min. bias instrument sample

Software: FSW trigger Calibrations & bookkeeping

External: Really shouldn't happen on orbit

Hardware Trigger Logic

#	EXT	SOL	PER	CNO	CHI	CLO	TKR	ROI	?	Comment
0	1	х	х	х	Х	х	х	х	Y	Error
1	0	0	Х	Х	Х	Х	0	1	Y	Error
2	0	1	Х	Х	Х	Х	Х	х	Y	Error
3	0	0	1	Х	Х	Х	Х	Х	Y	Cyclic
4	0	0	0	1	Х	1	1	1	Y	CNO
5	0	0	0	1	Х	Х	Х	Х	%250	CNO Veto
6	0	0	0	0	1	Х	Х	Х	Y	CAL HI
7	0	0	0	0	0	Х	1	0	Y	TKR &!ROI
8	0	0	0	0	0	1	0	0	Y	Error
9	0	0	0	0	0	1	1	1	Y	Splash?
10	0	0	0	0	0	0	1	1	%50	MIP?

ACD Region of Interest definitions

28

OBF optimized for speed

EVENT RECONSTRUCTION

Reconstruction:

Developed with simulated data. Simulations validated in beamtests.

- Apply per-crystal calibration
- Clustering: group hits into clusters (TBD)
 - Up to now treat whole CAL as single cluster
- Moments analysis
 - Iterative procedure, minimize RMS w.r.t. shower axis
 - Cluster centroid (x,y,z)
 - Cluster axis (v_x,v_y,v_z)
 - Cluster moments and spread
 - Transverse, longitudinal RMS
- Energy Reconstruction (Multiple Methods)
 - Parametric correction for leakage out sides and gaps
 - Fit to cluster profile
 - Likelihood fit for event energy

- Hit clustering
 - combine adjacent hit strips in clusters
- Start with CAL direction, if available
 - useful seed for high energy events, which are complicated
- Combinatoric search for straight(ish) lines
- Propagate lines to next plane, add hits as possible
- Kalman fit/filter technique
 - Combine information (hits) with loss of information (multiple scattering)
 - Requires energy estimate to handle multiple scattering
- Order tracks by "quality"
 - Favor longest, straightest track
 - Most likely to come from event origin
- Vertexing: try to combine 2 best tracks into single item

- Apply tile calibrations
- Look for reason to veto event
 - Track extrapolation to ACD hit?
 - Compare ACD energy to CAL energy
 - Catches events where TKR direction is bad

Event Level Analysis

<u>**Complex**</u> multivariate analysis

Uses Classification Trees (CT) in conjunction with cuts

30+ individual cuts, in addition to CTs

Broken into many sub-sections

Outputs of the event level analysis

Data Processing Pipeline

Deliveries/Runs processing status

Space Telescope

We require 150-200 cores processing full time to keep up with data

Done in a pipeline which does all the bookkeeping

Pipeline also does routine science analysis and GRB searches

GRB Alerts

Gamma-ray Space Telescope

Data Monitoring: Rates & Orbit

Data Monitoring: Solar Flare

IRFS AND SCIENCETOOLS

Effective Area (A_{eff})

< 100 MeV limited by 3-in a row requirement

< 1 GeV limited discriminating information

> 100 GeV self-veto from backsplash

effective area P6_V3_DIFFUSE for energy=10000 MeV

Off-axis: more material, less cross section

Shift from front/back events as we go off-axis

Point Spread Function (P)

Low energy: dominated by MS

High energy: dominated by strip pitch

PSF P6_V3_DIFFUSE for energy =10000 MeV

Off-axis: more material, more MS at low energy

More pattern recognition confusion off-axis at high energy

Energy Dispersion (D)

Low energy: energy lost in TKR

High energy: energy lost out back of CAL

Energy resolution P6_V3_DIFFUSE for energy=10000 MeV

Off-axis: more material, more MS at low energy

More pattern recognition confusion off-axis at high energy

Particle Background Contamination

Space Telescope

Estimate particle background leakage from very large MC simulations

Need to generate 10⁹ events to have ~few hundred passing cuts

Fit for isotropic component in sky with different event samples

Sky does not change, difference is instrumental

- The LAT is a particle physics detector we've shot into space
 - We analyze individual events (one photon at a time) with high energy physics techniques to get photon sample
 - Lots of hard work to get (RA,DEC,E) behind the curtain
 - Challenging, interesting, extremely useful. Great opportunities for experts
- Huge variations in response to different types of events
 - Bandpass = 4-5 decades in energy (< 20MeV to > 300 GeV)
 - Field of View = 2.4 sr (some response up to 70° off-axis)
 - Understanding instrumental effects can be very hard