

Cosmic Rays and Supernova Remnants with Fermi

Fermi Summer School Lewes, DE, May 31 – June 10, 2011

Chuck Dermer

United States Naval Research Laboratory Washington, DC USA charles.dermer@nrl.navy.mil

On behalf of the Fermi Collaboration

<u>Outline</u> Cosmic ray history and properties Cosmic ray propagation and GALPROP Galactic γ-ray emissivity Solar and Lunar γ rays Cosmic-ray electron spectrum EGRET excess Supernova remnants Normal, Starburst and IR Luminous Galaxies

Dermer

1

Theory of Cosmic Ray Origin

- □ Cosmic rays: energetic cosmic particles composed mainly of protons and ions
- □ Cosmic rays: an important particle background in the space radiation environment
- 1. Particle radiations: Solar Energetic Particles, Cosmic Rays, Neutrinos
- 2. Photon Radiations

Radio emission (cosmic ray electrons)X-rays and γ rays (cosmic ray electrons,
protons, and ions)

Cosmic Ray Origin

Galactic GeV- PeV Cosmic Rays (accelerated by Supernova Remnants?) Ultra-high Energy Cosmic Rays (powered by black holes?)

- Cosmic rays do not point directly to their sources, because of magnetic fields in space.
- Gamma rays indicate sites of highenergy particles, but can be attenuated by matter or other photons at the source or in transit from the source to Earth.
- Neutrinos would unambiguously point to the sources of the cosmic rays, but are faint and difficult to detect.

Cosmic Ray History

- **99 yrs and counting**
- arXiv:1012.5068 Nationalism and internationalism in science: the case of the discovery of cosmic rays
- (Domenico Pacini) <u>Per Carlson</u>, <u>Alessandro De Angelis</u>
 - extra-terrestrial radiation possibly from the Sun
 - radioactivity from the crust of the Earth
 - radioactivity in the atmosphere (Kurz 1909)
- □ Identification of cosmic rays as charged particles/ions
- □ Particle physics
 - Positron, by Anderson, in 1933
 - Muon by Neddermeyer and Anderson in 1937
 - Charged pion by Powell, Lattes and Occhialini in 1947
 - Discovery of strangeness
- □ Extensive air showers
 - Rossi and Auger in the 30s
 - Air shower arrays: HiRes, Auger
- □ Radio astronomy
- □ Gamma ray astronomy
- □ Multi-messenger astronomy

Local Cosmic Ray Intensity

Cosmic Rays

Local Cosmic Ray Intensity

GeV cosmic ray flux: tens of protons /cm²-s

Dermer

Fermi Summer School

May 31 - June 10, 2011

6

Diffuse Galactic Gamma-ray Emission

Most striking feature of the GeV gamma-ray sky is the diffuse Galactic emission Cosmic rays interacting with interstellar medium

- CR_{protons} + gas $\rightarrow \pi^o \rightarrow 2\gamma$ Peaks at 70 MeV (in photon spectrum)
- $CR_{electrons}$ + radiation fields \rightarrow Compton
- $CR_{electrons}$ + ambient protons \rightarrow bremsstrahlung
- $CR_{electrons}$ + magnetic field \rightarrow radio, optical, X-ray synchrotron

Point/discrete source detection in the Galaxy requires background emission model

INPUTS AND OUTPUTS

HI, HII, H₂ surveys (X-factor)

- HI is traced by 21 cm line surveys
- H₂ derived indirectly using 2.6 mm line observations of CO (dark gas; Grenier et al. 2005; Casandjian & Grenier 2007)
- The total gas column density can also be traced indirectly from extinction and reddening by dust
- HII inferred from dispersion measures of pulsars.

Cosmic Ray Propagation

- Cosmic rays move in large-scale galactic magnetic field and diffuse by scattering off magnetic turbulence
- Combined spatial transport + energy-loss required for constructing γ-ray maps of supernova remnants
- Simulation color-coded according to cosmic ray energy:

Red lowest energies $(10^{16} - 10^{17} \text{ eV})$ Green, yellow, and turquoise are intermediate energies Dark blue/purple highest energies $(10^{19} - 10^{20} \text{ eV})$

- □ Half neutrons, half protons
- At lower energies, treat cosmic ray propagation with leaky box or diffusion model (GALPROP)

- Follow trajectories
- Guiding centers
- Diffusion equation

Dermer and Holmes 2005

GALPROP (GALactic cosmic ray PROPagation model)

Strong & Moskalenko (1998) + Porter, Johannesson, Orlando, Digel, Reimer
 Solve spatial/momentum diffusion-convection equation with sources, energy and fragmentation losses, and energy gains for protons, ions, electrons

Template fitting to determine diffuse Galactic emissions from secondary nuclear production; GALPROP to determine diffuse scattered radiation fields (Compton, synchrotron)

Diffuse γ-rays from Cosmic Ray Interactions in the Galaxy

Abdo et al., ApJ, 703, 1249 (2009)

LAT observations of γ -ray emission in the third quadrant (Galactic longitude from 200° to 260° and latitude from 22° to 60°) with no known molecular clouds, after subtracting point sources and Compton emission. Residual γ -ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV. N(HII)~1-2×10²⁰ cm⁻²

Diffuse γ-rays from Cosmic Ray Interactions in the Galaxy

The measured integral γ -ray emissivity is $(1.63\pm0.05)\times10^{-26}$ photons s⁻¹sr⁻¹ H-atom⁻¹ and $(0.66\pm0.02)\times10^{-26}$ photons s⁻¹sr⁻¹ H-atom⁻¹ above 100 MeV and above 300 MeV, respectively, with an additional systematic error of ~10%.

How to explain these numbers? If due to cosmic rays colliding with gas in the Galaxy

$$\dot{n}_{pH\to\pi^{0}}(T_{\pi}) = 4\pi n_{H} \int_{0}^{\infty} dT_{p} J_{p}(T_{p},\Omega_{p}) \frac{d\sigma_{pH\to\pi^{0}}(T_{p})}{dT_{\pi}} \qquad \pi^{0} \to 2\gamma$$

Kinetic energy $T_p = E_p - m_p c^2$; Total energy E_p

Dermer

Fermi Summer School May 31 - June 10, 2011 12

Secondary Nuclear Proton-Proton Cross Section

Dermer

γ-ray emissivity: model vs. data

Nuclear and Bremsstrahlung Cross Sections

Quiet Solar and Lunar Gamma-ray Spectrum

- \Box Lunar γ -ray emission depends on the flux of CR nuclei near its rocky surface
- Quiet solar γ-ray emission has two components: Compton γ rays from CR electrons and CR nuclei interactions with the gaseous solar atmosphere
- □ New probe of CR fluxes in the solar system during the entire solar cycle

LAT Lunar Flux (E>100MeV) = $(1.1 + - 0.2) \times 10^{-6}$ ph cm⁻² s⁻¹ (EGRET Flux(E>100MeV) = $(5.55 + -0.65) \times 10^{-7}$ ph cm⁻² s⁻¹

Solar γ-ray flares

Dermer

Cosmic Ray Electron Spectrum

6 mos: Abdo, et al. 2009, PRL, 102, 181101 (4.5 M events) 12 mos: Ackermann et al. 2010, PRD (8M events)

Cosmic Ray Anisotropy with Fermi

Search for possible CRE anisotropies with large statistics

- Local CR sources, propagation environment
- Construct no anisotropy map from flight data
- shuffling and direct integration
- Then search for anisotropies with different energy thresholds min) (60 GeV min.) and on different angular scales (10°-90°)
- Direct bin-to-bin comparison or spherical

harmonic analysis

No evidence of anisotropy above 60 GeV

Only weak evidence for galactocentric radius

EGRET GeV Excess Galactic Diffuse Emission

- Excess γ-ray emission, over that predicted using local demodulated cosmic ray spectrum, observed with EGRET (in all directions)
- □ Possible explanations:
 - Unusual location and cosmic ray spectrum
 - Nuclear physics wrong
 - γ rays from annihilating dark matter
 - EGRET miscalibration

Average diffuse γ -ray spectrum of the inner Galaxy region, $300^{\circ} < I < 60^{\circ}$, $|b| < 10^{\circ}(0.73 \text{ sr})$

Dermer

- Excess evidently due to EGRET miscalibration (e.g., self-vetoing)
- No additional component required

Decompose medium latitude Galactic diffuse (LAT) into Sources; Bremsstrahlung; Compton; π^{0} ; unidentified isotropic background consisting of extragalactic, unresolved, residual particle backgrounds

Fermi Summer School

Cosmic rays from supernova remnants

□ Need to supply ~ $5x10^{40}$ erg/s throughout the Galaxy

$$\begin{split} L_{CR} \sim (\frac{1 \ eV/\ cm^{-3}}{t_{esc}}) V_{gal} \approx 10^{40} \ erg \ s^{-1} \\ t_{esc} \approx 2 \times 10^7 \ yr & \text{from analysis of cosmic ray } ^{10}\text{Be} \ (\tau \approx 2 \times 10^6 \ yr) \\ V_{gal} \sim \pi (200 \ pc) (15 \ kpc)^2 \sim 4 \times 10^{66} \ cm^3 \\ \Box \ 1 \ \text{Galactic SN/30 yrs} \ \times \ 10^{51} \ \text{erg/SN} \ \times 10\% \ \approx \ 10^{41} \ \text{erg s}^{-1} \end{split}$$

Other energy sources:

- Novae
- Stellar winds from young stars
- neutron stars

 \Box Confirming signature: $\pi^{o} \gamma$ -ray bump

γ-ray emission from supernova remnants

Association of EGRET unidentified sources with SNRs

- Sturner & Dermer (1995); Esposito et al. (1995)

Table 1. Unidentified EGRET Sources With Possible SNR Associations

EGRET Source	SNR	$\theta_1 (')^a$	D_{max} (') ^b	θ_1/D_{max}	Type ^c	Radio Flux (Jy)
GRO J0542+26	G 180.0-1.7 (S147)	116.6	248.0	0.47	s	65
GRO J0617+22	G 189.1+3.0 (IC 443)	6.7	43.5	0.15	s	160
GRO J1110-60	G 291.0-0.1 (MSH 11-62)	7.8	56.0	0.14	F	16
GRO J2019+40	G 78.2+2.1 (γ Cygni)	27.7	48.0	0.58	s	340
GRO J0635+05	G 205.5+0.5 (Monoceros)	81.6	148.0	0.55	s	160
GRO J0823-46	G 263.9-3.3 (Vela)	87.7	127.5	0.69	С	1750
GRO J1416-61	G 312.4-0.4	11.9	49.8	0.24	s	44
GRO J1443-60	G 316.3+0.0 (MSH 14-57)	35.4	39.0	0.91	s	24
GRO J1758-23	G 6.4-0.1 (W28)	26.8	57.0	0.47	С	310
GRO J1823-12	G 18.8+0.3 (Kes 67)	13.0	36.8	0.35	S	27
GRO J1842-02	G 30.7+1.0	42.3	50.5	0.84	S	6
GRO J1853+01	G 34.7-0.4 (W44)	30.7	42.5	0.72	s	230
GRO J1904+06	G 40.5-0.5	36.7	63.0	0.58	S	11
	G 41.1-0.3 (3C397)	46.1	53.8	0.86	s	22

^a Angular distance from center of EGRET error circle to center of associated remnant.

^b Sum of the EGRET error circle radius plus the radius of the associated remnant.

^c S=Shell, C=Composite, F=Filled

Fermi detection of γ-ray emission from SNRs

Fermi has detected

- young (<~ 3000 yr) and historical SNRs: Cas A, RXJ 1713.7-3946 (1600 yr)
- Intermediate age (~ 10⁴ yr) SNRs: IC443, W28
- Middle-aged (> 10⁴ yr) SNRs: W51C, W44 (20000 yr), G349.7+0.2

Fermi-LAT Detections of SNRs					
Object	Diameter	Age	Cloud Interaction	Lγ 1-100 GeV	
Cas A	5 pc	330 yr	No	4x10 ³⁴ erg/s	
W49B	10 pc	~3000 yr	Yes	9x10 ³⁵ erg/s	
3C 391	15 pc	~6000 yr	Yes	6x10 ³⁴ erg/s	
G349.7+0.2	17 pc	~6000 yr	Yes	9x10 ³⁴ erg/s	
IC 443	20 pc	~10000 yr	Yes	8x10 ³⁴ erg/s	
W44	25 pc	~10000 yr	Yes	3x10 ³⁵ erg/s	
W28	28 pc	~10000 yr	Yes	9x10 ³⁴ erg/s	
CTB 37A	50 pc	~20000 yr	Yes	9x10 ³⁴ erg/s	
G8.7-0.1	63 pc	~30000 yr	Yes	8x10 ³⁴ erg/s	
W51C	76 pc	~30000 yr	Yes	8x10 ³⁵ erg/s	
References: Abdo+2009_2010a_2010b_2010c_Castro & Slane 2010					

Fermi detects **γ**-ray emission from Cas A

Abdo et al. 2010, ApJ, 710, L92

- □ One of the youngest SNRs in our Galaxy (1680)
- One of the brightest radio sources in the sky
- □ Angular size of 2.5' in radius \Rightarrow size of 2.34 pc at a distance of 3.4+0.3-0.1 kpc
- □ Consistent with point source
- □ Strong magnetic fields (up to 1 mG) implied from X-ray variability on short timescales

Fermi detection of RX J1713.7-2942

- □ Faint source in a complicated region
- □ Sources to the north coincide with mol. material (CO/HII)
- □ Hard spectrum in the Fermi-LAT band

HESS/Suzaku (Tanaka et al. 2008)

May 31 - June 10, 2011 26

Multizone Leptonic Model for RXJ 1713

Fermi detects y-ray emission from W44

Abdo et al. 2010, Science, 327, 1103

- \Box ~2×10⁴ yr shell SNR; interacting with molecular clouds with n~100 cm⁻³
- □ 2-10 GeV count map (left) and deconvolved image (right) , Spitzer 4.5µ IR contours
- \Box cross marks pulsar, PSR B1853+01, with age ~2×10⁴ yr
- □ Spectrum more consistent with hadronic than leptonic processes

Dermer

Fermi Summer School

Broadband modeling of W51C

Abdo et al. 2009, ApJ, 706, L1

- □ Older than 20,000 years
- □ Interacting with molecular clouds (masers)
- □ Shell structure in radio

 10^{-10}

□ Extended in the Fermi-LAT band beyond the PSF

γ -ray SNRs and cosmic ray origin

Young SNRs have nonthermal synchrotron X-rays, strong TeV detections, X-ray/TeV correlation; γ-rays likely leptonic in origin

 \Box RXJ 1713.7-3946 has hard Fermi GeV spectrum, rising in vF_v

In Middle-aged SNRs have steep spectrum from GeV to TeV; γ-rays likely hadronic in origin

Spectral evolution with age

 Energy in cosmic rays represents few to tens of percents of SN energy
 IC 443 with intermediate age (~10000 yrs), shows intermediate spectrum

Normal, Starburst and IR Luminous Galaxies

Detection of LMC with EGRET

 $\phi_{\gamma} = 19 \times 10^{-8} \text{ ph}(>100 \text{ MeV}) \text{ cm}^{-2} \text{ s}^{-1}$ (Sreekumar et al.1992)

Spectral shape consistent with that expected from cosmic ray interactions with matter

Scale Milky Way and LMC to

- 1. local galaxies (SMC, M31)
- starburst Galaxies (M82, NGC 253; ≈ 3 Mpc)
- IR Luminous Galaxies (Arp 220; ≈ 72 Mpc) (Torres 2004)

Detection of LMC with Fermi

 $\phi_{\gamma} = 26.3(\pm 4.7) \times 10^{-8} \text{ ph}(>100 \text{ MeV}) \text{ cm}^{-2} \text{ s}^{-1}$ 33 σ

D ≈ 50 kpc, i ≈ 20°-35°, diameter ≈ 8° $M_{gas} \approx 0.6 \times 10^9 M_o$ (≈10% of Milky Way) Supernova rate ≈0.2 of Milky Way

- LMC for the first time resolved in gamma rays
- 30 Doradus star forming region is a bright source of gamma rays and very likely a powerful cosmic-ray accelerator
- No significant point source contribution (no pulsations from PSRs J0540-6919 and J0537-6910)
- Gamma-ray emission correlates well with massive star forming regions and little with the gas distribution
- Compactness of emission regions suggests little CR diffusion
- Average CR density ≈ 0.2–0.3 that in solar vicinity
- 1.6 (±0.1)×10⁻¹⁰ erg cm⁻² s⁻¹

- SMC for the first time detected in γ rays
- Steady emission over ~3° but not clearly correlated with massive stars, neutral gas, SNRs or pulsars
- Average CR density ≈ 0.15 that in solar vicinity

• 3.7 (±0.7)×10⁻⁸ ph(>100 MeV) cm⁻² s⁻¹

• Residual counts maps after subtraction of fitted celestial background model and smoothing by a 2D Gaussian kernel with σ = 0.4°.

- H α emission contours of the SMC in logarithmic scale are shown
- locations of the currently known pulsars and SNRs in the galaxy (stars and points respectively)

Hubble Heritage Team (AURA/STScl/NASA)

Starburst Galaxies

- Starburst galaxies distinguished by regions of rapid star formation, 10-1000 × Milky Way rate
 - Correspondingly high supernovae rates
 - Dense clumps of molecular gas
 - Highly luminous at infrared wavelengths, radio correlation

□ M82 and NGC 253

- Two closest starburst galaxies (~3.5 Mpc)
- Edge-on viewing angles
- Small (~100 pc scale) starburst regions
- Star formation rate ~10 × Milky Way rate
- Lack active nuclei
- Extensively studied in multiple wavebands, detailed modeling/predictions

GeV/TeV Emission from Starburst Galaxies

- Fermi LAT has detected steady, point-like, emission above 200 MeV from three starburst galaxies
 - M82 (6.8σ); also detected with VERITAS (summer 2009)
 - NGC 253 (4.8 σ); also detected with HESS (summer 2009)
 - **NGC 4945** (reported in 1LAC; also has Seyfert nucleus)
- Diffuse gamma-ray emission from cosmic-ray interactions in star-forming galaxies is most probable origin of γ rays
 - Unresolved GeV emission, TeV emission predominantly in central region
 - LAT all-sky survey can point out additional candidates for TeV observatories
- Observations and results
 - Detection significance maps
 - Point-like and steady
 - Integral fluxes consistent with galactic diffuse emission
- □ Interpretation
 - Correlate star-formation with enhanced cosmic-ray intensity

Detection Significance Maps

Galactic diffuse, isotropic diffuse, and point sources subtracted

Test Statistic (TS) = $-2 \log(L_{source} - L_{no source})$ 0.68, 0.95, 0.99 confidence level localization contours Appear as LAT point sources, starburst regions unresolved

Spectra

Observed integral fluxes consistent with models of diffuse galactic gamma-ray emission, but data do not yet tightly constrain spectral shapes

	Flux (>100 MeV) (10 ⁻⁸ ph cm ⁻² s ⁻¹)	Photon Index
M82	$1.6 \pm 0.5_{stat} \pm 0.3_{sys}$	$2.2 \pm 0.2_{stat} \pm 0.05_{sys}$
NGC 253	$0.6 \pm 0.4_{stat} \pm 0.4_{sys}$	1.95 ± 0.4stat ± 0.05 _{sys}

Properties of Star-Forming Galaxies

Galaxy	d	R_{SN}	M_{Gas}	$F_{-8}{}^{b}$	$4\pi d^2 F_{\gamma}$	L^c_{γ}	Index	:
	(kpc)	(century^{-1})	$(10^9 M_{\odot})$		(10^{41} ph/s)	$(10^{39} m erg/s)$		
MW	_	2.0 ± 1.0	6.5 ± 2.0	_	11.8 ± 3.4^{d}	1.2 ± 0.5	2.2 ± 0.15	
LMC	52 ± 2	0.5 ± 0.2	0.67 ± 0.08	26.3 ± 2.0	0.78 ± 0.08	0.041 ± 0.007	2.26 ± 0.11	
SMC	61 ± 3	$pprox 0.12^e$	pprox 0.45	3.7 ± 0.7	0.16 ± 0.04	0.008 ± 0.003	2.23 ± 0.12	
M31	780 ± 30	1.1 ± 0.2	7.7 ± 2.3	0.9 ± 0.2	6.6 ± 1.4	0.43 ± 0.09	2.1 ± 0.22	
M82	3600 ± 300	20 ± 10	2.5 ± 0.7	1.6 ± 0.5	250 ± 90	13 ± 5	2.2 ± 0.2	
N253	3900 ± 400	20 ± 10	2.5 ± 0.6	0.6 ± 0.4	110 ± 70	7.2 ± 4.7	1.95 ± 0.4	

- Enhanced cosmic-ray intensity explains the observed starburst gamma-ray fluxes
- Star-formation rate and gas density nonuniform throughout galaxies
- uncertainty in distance measurements

Fermi and Cosmic Rays

- Fermi shock acceleration is established acceleration mechanism in SNRs
- Has Fermi established that (middle-aged) SNRs are sources of the hadronic cosmic rays?
- □ An apparent π^{o} decay feature is observed in some remnants
- □ Gas clouds/targets are found in most Fermi-detected SNRs
- □ Systematic trend from young to middle-aged
- □ Need confirming neutrino detection to establish cosmic-ray origin
- Theory for transition from electron-dominated (young) to protondominated (middle-aged) needed

Back-up Slides

Wolf-Rayet Stars/ OB associations

- Colliding stellar winds as a source of γ rays
- Enhanced acceleration from shocked winds (compare high mass X-ray binary/ pulsar systems)
- □ example: Westerlund 2: 12 O
 - + 2 WR stars
 - SNRs
 - Wolf-Rayet stars
 - OB stars
 - colliding stellar winds
 Reimer, Pohl, Reimer (2006)
 Romero, Benaglia, Torres (1999)

Gamma Rays from Dark Matter Annihilation

Consider supersymmetric neutralinos (~ vanilla CDM WIMP candidate)

Most γ via (non-rel.) quarkantiquark pairs \Rightarrow hadronization \Rightarrow pions

Resulting pion bump at ~ $m_{\chi}/25$ ranges from 1-100 GeV depending on WIMP mass

Sharp energy cutoff, so very different from, e.g., emission from power-law cosmic-ray proton spectra

Baltz, Taylor & Wai 2007 - spectrum from DarkSUSY/Pythia

Fermi Summer School

May 31 - June 10, 2011 4

GALPROP: GALactic cosmic ray PROPagation model

Strong & Moskalenko (1998) + Porter, Johannesson, Orlando, Digel

- Detailed Fermi LAT Galaxy emission requires correspondingly detailed physical model for interpretation
- □ GALPROP model allows predictions of cosmic propagation and the resulting interstellar emission for gamma rays and synchrotron radiation

Dermer

Fermi Summer School

Fermi detection of γ-ray emission from SNRs

- □ Particle acceleration by shocks in Galactic SNRs
- □ ~274 known Galactic SNRs
- Fermi has detected
 - young (<~3000 yr) and historical SNRs: Cas A, RXJ 1713.7-3946
 - Intermediate age (~ 10⁴ yr) SNRs: IC443,
 - Middle-aged (>~ 3×10⁴ yr) SNRs: W51C, W44, W28, G349.7+0.2 (interacting with molecular clouds)

□ Important Questions:

- Do SNR shocks accelerate particles?
- Do SNRs accelerate protons (p⁺/e⁻ ratio)?
- What is the energy density of the accelerated particles?
- How efficiently is shock kinetic energy converted to CR energy? What is the maximum particle energy?
- Do SNRs accelerate CRs up to the knee?
- -Is the magnetic field amplified in SNRs?