ICECUBE NON-DETECTION OF GRBS: CONSTRAINTS ON THE FIREBALL COMPOSITION AND IMPLICATIONS FOR UHECRS &DIFFUSE PEV NEUTRINO EMISSION FROM ULTRA-LUMINOUS INFRARED GALAXIES

> Hao-Ning He Purple Mountain Observatory

Lewes, Delaware, 2013.06.01

IceCube non-detection of GRBs: Constraints on the fireball composition and implications for UHECRS He et al. 2012 ApJ, V752-29

•Haoning He

•Coauthors: Ruoyu Liu, Xiangyu Wang, Shigehiro Nagataki, Kohta Murase, Zigao Dai

GRB neutrinos

Assumptions:

Protons and electrons are accelerated in GRB fireball. GRB is the major source of UHECRs. Waxman & Bahcall 1997

$$p\gamma \to \Delta \to n\pi^+$$

$$\pi^+ \to \nu_\mu \mu^+ \to \nu_\mu e^+ \nu_e \bar{\nu_\mu}$$

$$p\gamma \to \Delta \to p\pi^0$$

kappes' talk in kyoto, 2010

IceCube Data Analysis

GRBs Sky Map (2008.04.05-2010.05.30 during the operations of IceCube 40-string and 59-string configuration from North

No events are detected for Ic40 and Ic59 data analysis.

IceCube Collaborator

IceCube group suggests that the assumption of GRBs as the major source of UHECR is highly chanllenged.

One of the mistakes of IceCube's calculation

IceCube overestimate the neutrino flux by a factor of 4 due to adopting a constant energy converted fraction.

$$\int_{0}^{\infty} dE_{\nu}E_{\nu}F_{\nu}(E_{\nu}) = \frac{1}{8} \frac{1}{f_{e}} \left(1 - (1 - \langle x_{p \to \pi} \rangle)^{\Delta R/\lambda_{p\gamma}}\right) \times \int_{1 \text{ keV}}^{10 \text{ MeV}} dE_{\gamma} E_{\gamma}F_{\gamma}(E_{\gamma})$$

The IceCube collaborator overestimates the flux of neutrinos by a factor of 5 due to adopting a constant energy density of photons.

Li 2011, Hummer et al. 2011, Kohta et al. 2011, He,Liu,Wang,Nagataki +,2012.

Neutrino spectra for individual GRB

E_v [GeV]

Neutrino Spectra for 215 GRBs

Neutrino Spectra for different dissipation Radius

Neutrino Spectra by adopting Inherent Correlation

E, [GeV]

Summary I

- Our modified numerical calculation predict GRB neutrinos whose flux is a factor of ~20 lower than that predicted by IceCube group.
- For the null result of IceCube, we can constrain the GRB model and the flux of protons.
- We cannot exclude the proposal that GRBs are the major sources of UHECRs so far.

$L_{\gamma}(\mathrm{ergs^{-1}})$	Г	\mathbf{Z}	$\eta_{p,c}$
10^{52}	$10^{2.5}$	2.15	26.0
		1	39.9
$L_{\gamma G}$	$\Gamma_{\mathbf{G}}$	2.15	8.16
		1	7.79
$L_{\gamma G}$	$\Gamma_{\rm L}$	2.15	9.07
		1	7.72

Diffuse PeV neutrino emission from Ultra-Luminous Infrared Galaxies

He et al., 2013, PRD, vol. 87, Issue 6, id. 063011

Hao-Ning He

• Collaborators: Tao Wang, Yi-Zhong Fan, Si-Ming Liu, Da-Ming Wei

First observation of PeV-energy neutrinos with IceCube

- A. Ishihara, "IceCube: Ultra-High Energy Neutrinos," Talk at Neutrino 2012, Kyoto, Japan, June 2012
- IceCube Collaboration,2013
- Data were collected between May 2010 and May 2012, an effective livetime of 615.9 days excluding 54.2 days used for the optimization of the analysis.

Origins Excluded by IceCube Collaboration:

- 1. instrumental artifacts
- 2. atomospheric background
- 3. Glashow Resonanse
- Possible origins:
- Astrophysics neutrinos from GRBs, Hypernova, AGNs, ULIRGS, Cluster of Galaxies,...
- GZK neutrinos

Liu &Wang He+ Roulet+ Bhattacharya+ Barger+ Cholis & Hooper Kalashev+

.....

Properties of ULIRGs

Ultra-Luminous Infrared emisison $L_{8-1000\mu m} > 10^{12} L_{\odot}$

Hypernova

SN 1997ef, SN 1997dq, SN 1998bw and SN 2002ap

p-p collision

$$\pi^+ \to \mu^+ + \nu_\mu \to e^+ + \nu_e + \bar{\nu}_\mu + \nu_\mu$$

• Energy loss time scale

$$\tau_{\rm loss} = 1.4 \times 10^4 {\rm yr} \frac{l}{100 {\rm pc}} \left(\frac{\Sigma_{\rm gas}}{1.0 {\rm g cm}^{-2}}\right)^{-1}$$

• The comfinement time scale

$$\tau_{\rm conf}\approx 2\times 10^5 {\rm yr} \left(\frac{\varepsilon_{\rm p}'}{10 {\rm PeV}}\right)^{-0.5} (\frac{\Sigma_{\rm gas}}{1.0 {\rm gcm}^{-2}})^{0.5}$$

$$\tau_{\rm conf} \geq \tau_{\rm loss}$$

$$\Sigma_{\rm gas} \gtrsim \Sigma_{\rm crit} = 0.17 \text{ g cm}^{-2} \left(\frac{\varepsilon_{\rm p}'}{10 \text{PeV}}\right)^{1/3} \left(\frac{l}{100 \text{pc}}\right)^{2/3}$$

The Diffused Neutrino flux

The total energy of PeV neutrinos from an individual hypernova in ULIRG

$$E_{\nu} \approx 4 \times 10^{48} \text{erg} \frac{E_{\text{HN}}}{2 \times 10^{52} \text{erg}} \frac{\eta}{0.1} \frac{\epsilon_{\text{dec}}}{0.07} \left(\frac{\epsilon_{\nu}}{0.05}\right)^{\alpha - 1} \left(\frac{1 + z}{3}\right)^{2 - \alpha}$$

The diffused neutrino flux

$$F_{\nu}(\varepsilon_{\nu}) = \frac{1}{4\pi} \frac{c}{H_0} \int_0^z dz \frac{4\pi D_{\rm c}(z)^2 R_{\rm HN}(z) N_{\rm c} \varepsilon_{\nu}^{2-\alpha}}{4\pi D_{\rm L}(z)^2 \sqrt{\Omega_{\rm M}(1+z)^3 + \Omega_{\Lambda}^2}}$$

$$\frac{dN'_p}{d\varepsilon'_p} \propto \varepsilon'^{-\alpha}_p$$

The Hypernova Rate

The Neutrino Spectrum

Summary II

- 0.1 event can be obserbed for 1 year observations by IceCube full configurations, plays importan role on contributing to diffuse neutrinos.
- The ULIRG neutrino component is likely characterized by a cut off (or break) at a few PeV.

Disscusion

Other possible origins :

- GRBs
- Crashes of AGN ejecta with dense media in ULIRG/LIRG
- Crashes of supernova ejecta with other dense media (e.g., massive circumstellar material shells, Murase et al. 2011)
- clusters of galaxies (Murase et al. 2008)
- GZK neutrinos (Kalashev et al. 2013...)

Thank you!