Discovery of fast variability of the TeV γray flux from the radio galaxy M 87 with H.E.S.S.

Matthias Beilicke for the H.E.S.S. collaboration

University of Hamburg, Germany (matthias.beilicke@desy.de)

First GLAST Symposium

(Stanford University, 5-8 February 2007)

- Introduction
- The radio galaxy M 87
- H.E.S.S. detection of M 87 and implications
- Summary and outlook

bmb+f - Förderschwerpunkt

Astro-Teilchenphysik

Großgeräte der physikalischen Grundlagenforschung

TeV γ-ray astrophysics with Cherenkov telescopes

- Source "produces" high energy γ -rays
- Gammas enter earth's atmosphere and produce air showers & Cherenkov light
- Imaging of Cherenkov light with telescopes: reconstruct direction, energy, etc. of primary particle (stereoscopic obs. pioneered by HEGRA)

The H.E.S.S. Cherenkov telescopes

- High Energy Stereoscopic System (Namibia, stereoscopic observation mode)
- Mirror dish (per telescope):
 ~107m² mirror surface, 380 facets
- Photomultiplier camera:
 960 PMTs, ~5° field of view (FoV)
- Sensitive energy range: 100 GeV up to several 10 TeV, ∆E/E ~15% 1% of Crab: 5 sigma in 25h
- Angular resolution: ~0.1° per event

Extragalactic GeV/TeV 7-ray sky (today)

Name	redshift	reference	
M 87	0.004	Aharonian et al, A&A, 403, L1 (2003)	Legend:
Markarian 421	0.030	Punch et al., Nature, 358, 477 (1992)	discovered by H.E.S.S.
Markarian 501	0.034	Quinn et al., ApJ, 456, L83 (1996)	seen by H.E.S.S.
1ES 2344+514	0.044	Catanese et al., ApJ, 501, 616 (1998)	
Markarian 180	0.045	Albert et al., astro-ph/0606630 (2006)	
1ES 1959+650	0.047	Nishiyama et al., 29 th ICRC, 3, 370 (1999)	plasma jet
PKS 548-322	0.067	preliminary!	dust toru
PKS 2005-489	0.071	Aharonian et al, A&A, 436, L17 (2005)	
PKS 2155-304	0.116	Chadwick et al., ApJ, 513, 161 (1999)	
H 1426+428	0.129	Horan et al., ApJ, 571, 753 (2002)	
1ES 0229+200	0.139	preliminary!	
H 2356-309	0.165	Aharonian et al, Nature, 440, 1018 (2006)	
1ES 1218+304	0.182	Albert et al., ApJ, 642, L119 (2006)	
1ES 1101-232	0.186	Aharonian et al, Nature, 440, 1018 (2006)	BH and
1ES 0347-121	0.188	preliminary!	accretion disc
PG 1553+113	>0.25?	Aharonian et al, A&A, 448, L19 (2006)	

Except for M87, all extragalactic TeV γ -ray sources are blazars

The giant elliptical radiogalaxy M 87

1246 - radio (VLA)

Distance:

 A16 Mpc
 (z=0.00436)
 Central BH:
 M_{BH}~ $3 \cdot 10^9$ M_{sun}
 Jet angle: ~30°
 ⁴⁴

 \Rightarrow not a blazar! ³² ^{1223 J}

44 -42 -40 -38 -36 -34 -27 **P**

> 15 00 RIGHT ASCENSION (B1950)

optical (HST)

radio (VLA)

- Predictions of TeV γ-ray emission and charged 10²⁰ eV particles (UHECR)
- First detection (>4σ) at TeV γ-ray energies by HEGRA in 1998/99 [Aharonian et al. (2003), A&A, 403, L1]

X-ray (Chandra)

M 87: Interesting candidate for TeV γ -ray observations

M 87: confirmation as TeV γ-ray source by H.E.S.S.

Observations by H.E.S.S.: → 2003 (~19 h, construction phase) → 2004-06 (~57 h, 4 telescopes) Whole data set (hard cuts): 243 γ -ray events (13 σ) \Rightarrow confirmation as TeV γ -ray source Point-source, position compatible with position of M 87 nucleus Upper limit for extension (99.9% c.l.): 3 arc min [14 kpc] First extragalactic TeV γ-ray source which is not a blazar

M 87: energy spectra

- Separate energy spectra: 2004 (~5σ) & 2005 (~10σ) using standard cuts
- Spectra well described by power-laws: $\frac{dN}{dE} = I_0 \cdot \left(\frac{E}{1 \text{ TeV}}\right)^{-\Gamma}$
- 2004 vs. 2005: photon indexes Γ compatible, but different flux levels

2005: hard energy spectrum beyond 10 TeV

M 87: light curve and long-term variability

- Integral photon flux above 730 GeV (year-by-year)
- Fit of a constant function: variability: 3.2 σ
- Kolmogorov test (applied to distribution of photon arrival times): $\sim 4 \sigma$ at the sky position of M 87

Long-term variability of TeV γ -ray emission from M 87

M 87: light curve and short-term variability

Surprisingly also short-term variability within 2005 (>4 σ) \Rightarrow constrains size of emission region (R ~ 5 δ R)

relativistic Doppler factor

M 87: light curve and variability

No X-ray/TeV correlation can be derived \Rightarrow need further MWL observations

Interpretation: leptonic vs. hadronic models

Upscatter-Compton-model:

[Georganopoulos (2005), ApJ, 634, L33] → Expansion of SSC model: velocity gradient along inner jet

Higher energy/intensity in IC peak as for SSC

GLAST

 \rightarrow Hard energy spectrum challenges both classes of models

Synchrotron proton blazar model:

[Reimer et al. (2004), A&A, 419, 89]

- → Electrons: Synchrotron radiation
- → Protons: scattering with photons (and secondary reactions), synchrotron radiation
- → Production of v's and UHECR

M 87: Interpretation and outlook

TeV data (H.E.S.S.)

- M 87 established as first extragal. TeV γ-ray source which is not a blazar
- Variability: R ~ 5 x 10¹⁵ δ cm,
 excludes following models:
 - → Dark matter (χ) annihilation
 - → CRs in M87, intra cluster gas
 - → Large scale jet & knots
- Emission region most likely close to central black hole
- Hard spectrum: Challenges leptonic (SSC) and hadronic (SPB) models
- Alternative mechanisms?
- Aharonian et al., Science, 314, 1424 (2006)

MWL data & GLAST

- What to expect from GLAST:
 - → Position of the VHE peak in SED
 - Variability (time-scales and MWL correlations)?

Future MWL observations to constrain the models

Backup transparencies

Backup transparencies

Stereoscopic event reconstruction

- Image parametrisation: Hillas (I, w, Amp, dist, cog)
- Direction:
 Intersection of length axis
- Energy: Image amplitude (+ core distance & zenith)
- Type of primary: Statistical γ-hadron separation by mean scaled image width (mscw)

Detector characteristics

- Point spread function (morphology studies)
- Energy dependent efficiency (energy spectra)
- → FoV dependent acceptance (background)

M 87: Short-term variability: Model vs. Hillas

Short-term variability in 2005: confirmed by (more sensitive) model analysis

M 87: interpretation: leptonic models

SSC model (core region):

- → High energy e⁻-population
- → Synchr.- and inv.Compt. radiation
- → Requires high Doppler factors
- Modelling for M87 problematic [Georganopoulos (2005),ApJ, 634,L33]

Magnetic field in the jet:

[Stawarz et al. (2005), ApJ, 626, 120]

- → IC emission in knots of the jet
- Problem: TeV γ-ray variability
- Estimation of the jet magnetic field

Upscatter-Compton-model:

[Georganopoulos (2005), ApJ, 634, L33]

- Expansion of the SSC model: velocity gradient along the emission region in the jet
- → Higher energies as for Inv. Comp.

M 87: interpretation: hadronic models

Synchrotron proton blazar model:

[Reimer et al. (2004), A&A, 419, 89]

- → High energy particles (core region)
- Electrons: Synchrotron radiation (radio- to X-rays)
- Protons: scattering with photons (and secondary reactions), synchrotron radiation
- Production of neutrinos and emission of ultra high energy charged particles (UHECR)
- Model predicts steep γ-ray spectrum (in contrast to H.E.S.S. measurement)

 \rightarrow SPB model not being confirmed, needs modeling including H.E.S.S. results

M 87: interpretation: misc models

Central dust torus in M87:

[Donea & Protheroe (2003), PThPS, 151, 186]

- Temperature dependent infrared radiation field of a dust torus
- Absorption of the TeV γ-rays
- → Signature in measured spectrum

T < 100K or TeV γ -ray emission not originating from centre

Neutralino(χ) annihilation:

[Baltz et al. (1999), Phys.Rev.D, 61, 023514]

- → Concentration of dark matter in M87
- → Neutralino annihilation \rightarrow TeV- γ 's

Measured photon flux not being explained by (only) χ annihilation (flux level & var.)

M 87: Seen at radio wavelengths

Cen A: One of the next possible candidates...

- Distance: 3.4 Mpc (z = 0.0018) \Rightarrow even closer than M87!
- Jet angle: $\sim 50^\circ \Rightarrow \text{not a blazar!}$
- GeV/TeV γ -ray emission:
 - → Evidence (>4σ) above 300 GeV [Grindlay et al. (1975), ApJ, 197, L9]
 - → Predictions [Bai & Lee (2001), ApJ, 549, L173]
- H.E.S.S. observations (2004/2005): no signal in ~5h of data $I(E>190 \text{ GeV}) < 5.7 \times 10^{-12} \text{ cm}^{-2} \text{ s}^{-1}$ (assuming photon index of $\Gamma = 3.0$)
- H.E.S.S. PSF similar to extension of the kpc jet!

radio emissior