

New Limits On The Density Of The Extragalactic Background Light From The Spectra Of All Known TeV Blazars

Daniel Mazin

Max-Planck-Institut für Physik, Munich

and

Martin Raue (Hamburg University)

Spectral Energy Distribution of the EBL

- Unique imprint of the history of the universe
- Test of star formation and galaxy evolution models
- Cosmological evolution models have to explain current EBL
- Opacity source of GeV-TeV photons

Attenuation of GeV-TeV photons

- Direct measurements of the EBL in UV to IR are difficult (foregrounds)
- TeV photons are attenuated via pair production with UV to IR photons from the EBL
- Imprint of the EBL density and shape in the measured TeV Generic EBL limits from TeV blazars spectra

Daniel Mazin, MPI, Munich

Problems for TeV blazars

- A: TeV crisis (pile-up at high energies)
- B: Too hard spectra (spectral index <

Mazin, MPI, Munich السبي

This study

- 1. Provide limits on the EBL density, which do not rely on a predefined shape or model
- 2. Treat all TeV blazars in a consistent way, using generic assumptions about the intrinsic spectrum and statistical evident exclusion criteria
- **3**. Use spectral data from all detected TeV blazars to:
 - a) Derive upper limits on the EBL from individual spectra
 - b) Combine these results to a single robust on the EBL for a wide wavelength range

Daniel Mazin, MPI, Munich

The technique: Grid Scan

- Shapes constructed using notinterpolating splines (superposition of smooth gausslike base functions)
- Highest shape on the level of the existing upper limits
- Lowest shape on the level of the existing lower limits
- Generic EBL Timits from Ter Blazars

Daniel Mazin, MPI, Munich

Exclusion criteria

Find analytical expression for the intrinsic spectrum, evaluate fit parameters:

- Fitted photon index Γ is outside of allowed range
- Or: significant pile-up at high energies

Statistical tools:

- Likelihood ratio test to determine a "better" function
- Conservative error on spectral index $\Gamma: \ \Gamma$ + σ_{Γ} + σ_{sys} < Γ $_{max}$

2 Scans

At least part of TeV blazar spectrum: dN/dE ~

Realistic Scan: Γ <

Based on classical shock acceleration, taking maximum electron spectral index $\alpha=2$

Extreme Scan: Γ <

Base **2/3**n extreme SSC assumptions that almost monoenergetic electrons (heavily truncated electronspectrum) are responsible for the y-emission

Prototype of close by sources: Mkn 501

- 7766674 shapes excluded out of 8064000
- Excluded area is small because certain types of EBL shapes allowed independent on the level

Realistic Scan: Γ > 1.5

Results from the prototypes:

- Mkn 501: 7766674 shapes excluded out of 8064000: 96.30 %
- H1426+428: 69.09 % excluded
- 1ES 1101-232: 95.57 % excluded

Daniel Mazin, MPI, Munich

Combined results: realistic scan

Upper limit is defined as an envelope of all allowed

Daniel Mazin, MPI, Munich

Combined results: realistic scan

Combined results: extreme scan

Summary / Conclusions

- Strong limits from Optical to far IR using individual sources
- Much stronger limits after combining individual results
- Derived upper limits are conservative and robust for systematic effects (estimated to be 35 %)
- Submitted to A&A, astro-ph/0701694

Results can be interpreted in two ways:

- NIR excess not extragalactic and source counts resolved almost everything
- Blazar physics has to be reconsidered (improbable)

Systematic effects

- Grid setup. The minimum width of the EBL structures that can be resolved → 30%
- Evolution of EBL \rightarrow 10% (at most)
- Absolute Energy scale of TeV blazars
 → 2-3%
- Numerical uncertainties while fitting
 →
 Overall error (quadratic sum) →

TeV blazar sample

- Select best statistics
- Select hardest among similar
- Select best coverage in energy

Source	Redshift	Experiment	Energy range	Slope	Cut-off energy	Reference
			(TeV)	$\Gamma \pm \sigma_{\rm st} \pm \sigma_{\rm sy}$	(TeV)	
Mkn 421	0.030	MAGIC	0.10 - 3.0	$2.20 \pm 0.08 \pm 0.20$	1.44 ± 0.28	Albert et al. (2006c)
Mkn 421	0.030	HEGRA	0.70 - 18.0	$2.19 \pm 0.02 \pm 0.20$	3.6 + 0.4 - 0.3	Aharonian et al. (2002a)
Mkn 421	0.030	Whipple	0.35 - 0.90	$2.31 \pm 0.04 \pm 0.05$		Krennrich et al. (2002)
Mkn 501	0.034	HEGRA	0.50 - 22.0	$1.92 \pm 0.03 \pm 0.20$	6.2 ± 0.4	Aharonian et al. (1999)
1ES 2344+514	0.044	Whipple	0.80 - 11.0	$3.32 \pm 0.70 \pm 0.70$		Schroedter et al. (2005)
Mkn 180	0.045	MAGIC	0.14 - 1.5	$2.20 \pm 0.08 \pm 0.20$		Albert et al. (2006b)
1ES 1959+650	0.047	HEGRA	1.5 - 13.0	$2.83 \pm 0.14 \pm 0.08$	10 - 11	Aharonian et al. (2003a)
PKS 2005-489	0.071	H.E.S.S.	0.20 - 2.5	$4.0 \pm 0.4 (\pm 0.2)$	<u></u>	Aharonian et al. (2005a)
PKS 2155-304	0.116	H.E.S.S.	0.20 - 3.5	$3.37 \pm 0.07 \pm 0.10$		Aharonian et al. (2005b)
H1426+428	0.129	HEGRA	0.70 - 12.0	$2.6 \pm 0.6 \pm 0.1$	<u>197 - 59</u>	Aharonian et al. (2003c)
H 2356-309	0.165	H.E.S.S.	0.16 - 1.0	$3.06 \pm 0.21 \pm 0.10$		Aharonian et al. (2006b)
1ES1218+304	0.182	MAGIC	0.08 - 0.7	$3.0\pm0.4\pm0.6$	<u> 197 - 19</u>	Albert et al. (2006a)
1ES 1101-232	0.186	H.E.S.S.	0.16 - 3.3	$2.88\pm0.14\pm0.1$	31	Aharonian et al. (2006a)

Fitting functions

In order to allow for multi-zone (multicomponent) emission, breaks in spectrum are allowed

#	Description	Abbreviation	Formula $f(E) = dN/dE$	Parameters to evaluate
1	simple power law	PL	N ₀ E ^{-r}	χ^2 , Γ^{PL}
2	broken power law with transition region	BPL	$N_0 E^{-\Gamma_1} \left[1 + \left(\frac{E}{E_b} \right)^f \right]_{\Gamma_1 - \Gamma_2}^{\frac{\Gamma_1 - \Gamma_2}{f}}$	$\chi^2, \Gamma_1^{\mathrm{BPL}}, \Gamma_2^{\mathrm{BPL}}$
3	broken power law with transition region and super-exponential pile-up	BPLSE	$N_0 E^{-\Gamma_1} \left[1 + \left(\frac{E}{E_b} \right)^f \right]^{\frac{1}{f}} \exp\left(\frac{E}{E_p} \right)$	χ^2
4	double broken power law with transi- tion regions	DBPL	$N_0 E^{-\Gamma_1} \left[1 + \left(\frac{E}{E_{b1}} \right)^{f_1} \right]^{\frac{\Gamma_1 - \Gamma_2}{f_1}} \left[1 + \left(\frac{E}{E_{b2}} \right)^{f_2} \right]^{\frac{\Gamma_2 - \Gamma_3}{f_2}}$	χ^2 , Γ_1^{DBPL} , Γ_2^{DBPL} , Γ_3^{DBPL}
5	double broken power law with transi- tion regions and super-exponential pile- up	DBPLSE	$\text{DBPL} \times \exp\left(\frac{E}{E_{\text{P}}}\right)$	<i>χ</i> ²

Intermediate distance: H1426+428

- 5571772 shapes excluded out of 8064000
- Excluded area is small because certain types of EBL shapes allowed independent on the level

Distant sources: 1ES1101-232

- 7706625 shapes excluded out of 8064000
- Excluded area is rather big; given the upper limit at 0.4µ m, the NIR excess is excluded

Extreme Scan: $\Gamma > 2/3$

- Limits are (as expected) less restrictive. Still a very high number of excluded shapes
- NIR excess at 1µm is still excluded

Rejection statistics

Spectra

high confidence of the derived

Daniel Mazin, MPI, Munich