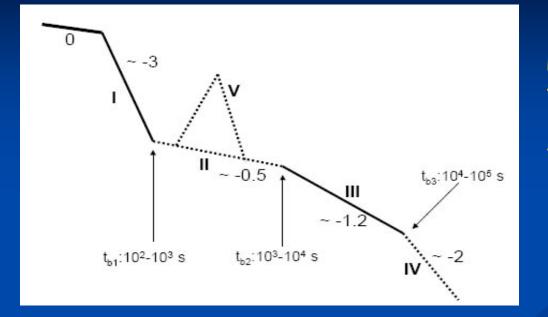
GeV early afterglow emission from GRB

Alessandra Galli ^{1,2,3} & L. Piro ³

1: INFN-Trieste, ²: University of Rome "La Sapienza" 3: INAF/IASF-Rome

First GLAST Symposium


Stanford University 5-8 February 2007

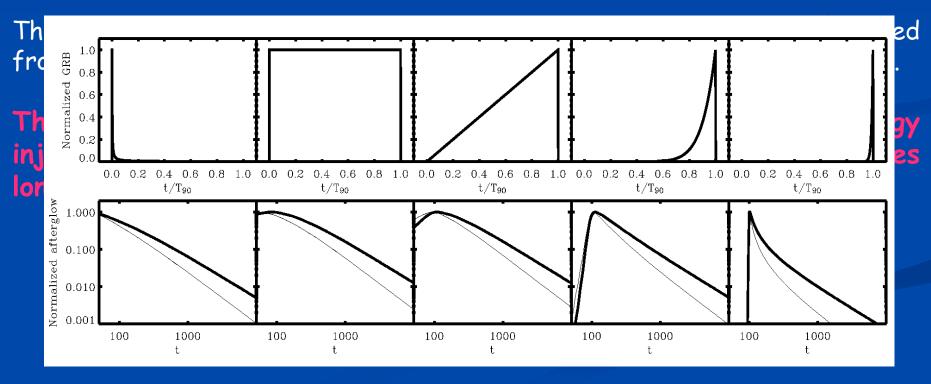
Exploring the High Energy Universe

. +

GRB X-ray flares

Prompt-to-afterglow transition characterized by initial steep decay, flattening, and flares

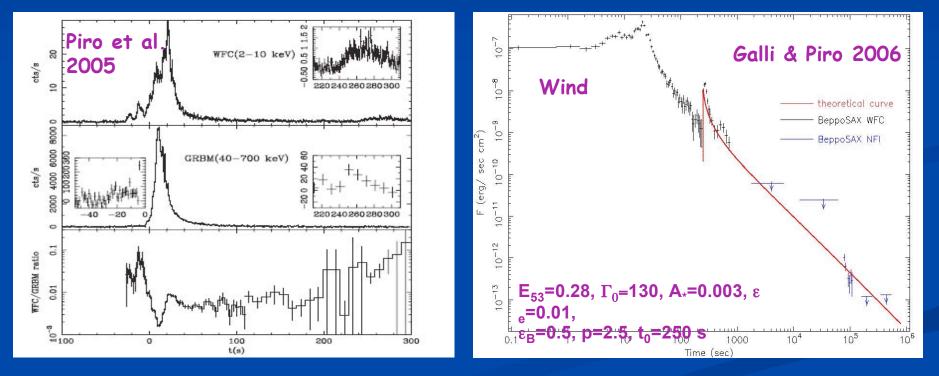
X-ray flares present in ~ 40% of Swift GRB sample.


X-ray flares globally softer than the prompt emission but:

 ✓ Several X-ray flares show hard-to-soft spectral evolution ⇒ Late Internal Shock (Zhang et al. 2005, Burrows et al. 2005)
✓ Other flares do not show spectral evolution and have a spectrum consistent with that of the afterglow ⇒ External Shock by thick shell fireball (Piro et al. 2005, Galli & Piro 2006)

A not "standard" External Shock: thick shell fireballs

In thick shells case Δ =ct_{eng}, thus t_{eng} >t_{dec}.


Most of the energy is transferred to the surrounding material around the end of the engine activity.

Application of the External Shock Model: GRB 011121

Flare spectrum softer than the main pulse and consistent with the afterglow spectrum at 1 day.

The light curve from the decay part of the flare is nicely reproduced by a power law if the origin of the time is shifted to the time of the flare.

This suggests that the flare is the beginning of the afterglow emission

GeV flares in association with X-ray flares

X-ray flares overlap with the afterglow emission, thus X-ray flares photons can be Inverse Compton scattered in the GeV-TeV band by afterglow electrons.

<u>External Shock model-Thick</u> <u>shell fireballs</u>

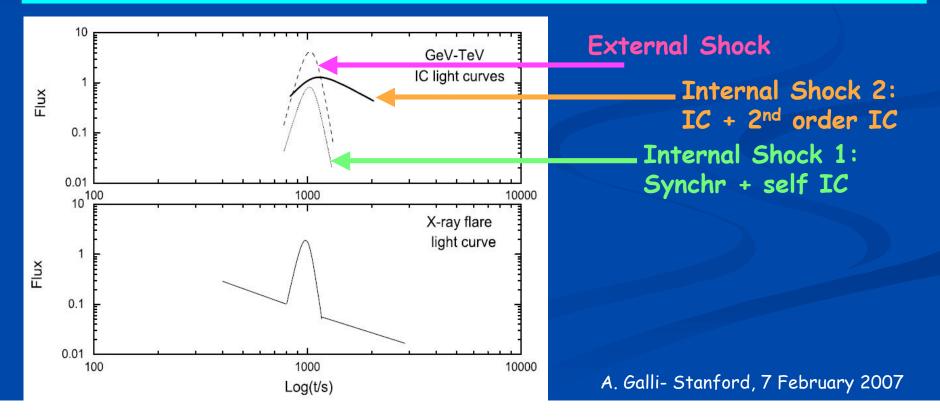
X-ray flares \Rightarrow synchrotron

GeV flares ⇒ self-IC emission of flare photons scattered by afterglow electrons

Late Internal Shock model

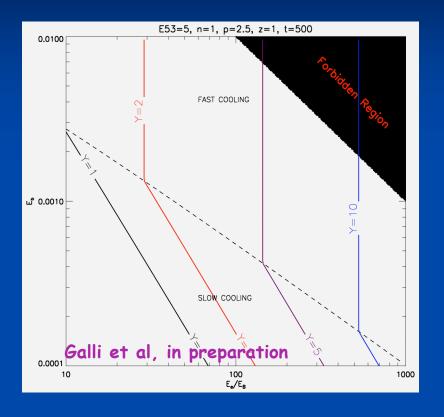
Two possible mechanisms (Wang et al. 2006, Fan & Piran 2006):

 \checkmark X-ray flares \Rightarrow synchrotron GeV flares \Rightarrow self IC emission


 \checkmark X-ray flares \Rightarrow IC emission GeV flares \Rightarrow 2° order IC on the afterglow electrons

-Internal Shock:

Low Lorentz factor, low Thompson cross section \Rightarrow no bright high energy flares Different emitting regions \Rightarrow temporal dilatation


-External Shock:

Higher Lorentz factor \Rightarrow brighter high energy flares Same region and electrons population \Rightarrow similar temporal profiles

External Shock: Inverse Compton vs Synchrotron

Thin shell, deceleration phase

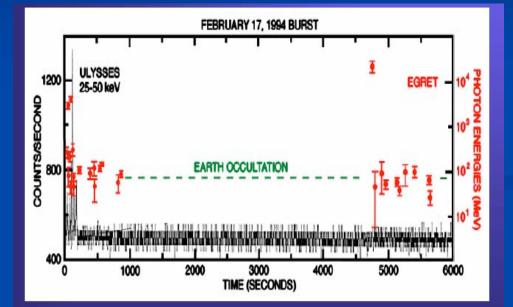
$$Y=L_{IC}/L_{syn}$$

FAST COOLING: $\eta=1, \ \forall \propto (\epsilon_e / \epsilon_B)^{1/2}$

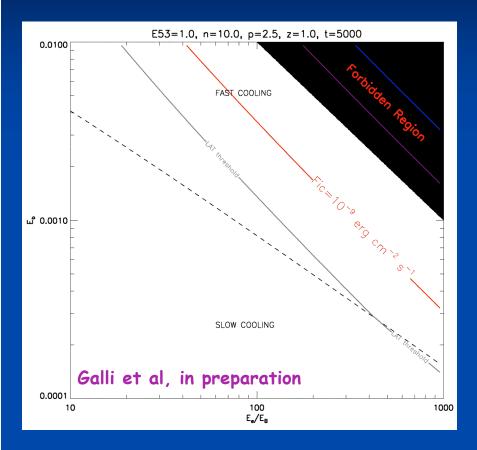
SLOW COOLING:

<1, $Y \propto (\eta \epsilon_{\rm s} / \epsilon_{\rm B})^{1/2}$

$$\epsilon_{B}$$
=8·10⁻² (E₅₃ n)^{-1/4} [1+($\epsilon_{e}/\epsilon_{B}$)^{1/2}]^{-1/2} ··($\epsilon_{e}/\epsilon_{B}$)^{-1/2} T_d^{1/4} (1+z)^{-1/4}


Relative importance of IC and synchrotron emission greater in fast cooling than in slow cooling

The importance of IC increases with E_{53} and n

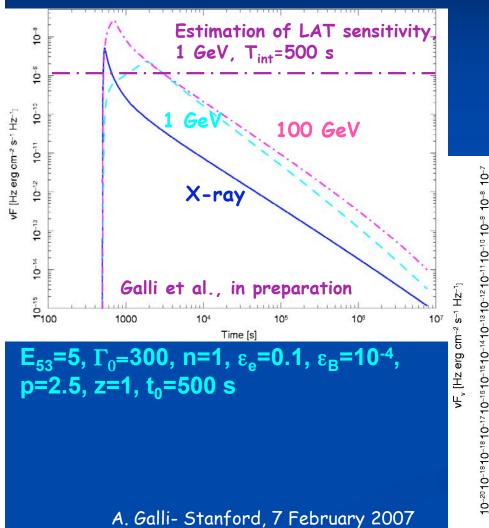

Very High Energy emission: GRB 940217

GRB 940217: indication of GeV emission thousands of s after the GRB onset (Hurley et al. 1994)

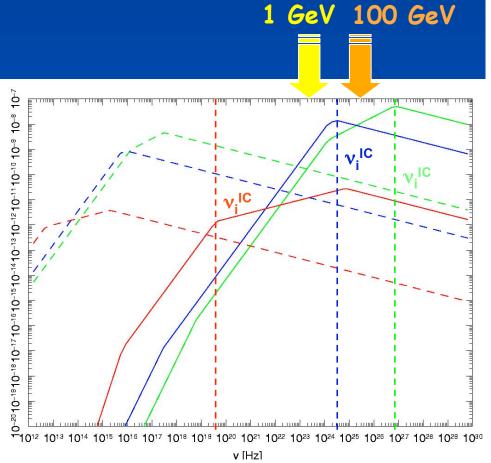
At high energies the spectrum becomes harder: additional emission process, such as Inverse Compton is required.

Inverse Compton emission from afterglow: application to GRB 940217

Duration of about 5000 seconds


Delayed emission spectrum, 30MeV-30GeV (Hurley et al. 1994):

-best fit power law, γ=2.83±0.64 -best fit fluence, S~7·10⁻⁶ erg cm⁻² -best fit mean flux, F ~10⁻⁹ erg cm⁻² s⁻¹


> Thin shell fireball $v_{c,IC} < v_{i,IC} < v_{obs}$ $\gamma=(p+2)/2$ $p=2.5 \Rightarrow \beta=2.25$ $\epsilon_e/\epsilon_B = 100$, $\epsilon_B \sim 3 \cdot 10^{-3}$, $n=10_{\mu}$

IC emission from a thick shell fireball

ISM-Fast Cooling

Conclusion

✓ Both in the framework of the internal shocks scenario and in that of the external shocks late X-ray flares are related to a long lasting central engine activity;

 \checkmark X-ray flares can be attended by GeV flares produced by IC, that could be detected by GLAST;

✓ IC emission from afterglow can explain also the delayed high energy emission detected by EGRET in GRB 940217;

✓ In the framework of the external shock we expect similar temporal profiles for X-ray and high energy flares. This is a strong prediction that will permit to discriminate between different models;

Broad band data (radio to X-ray) permit to determine
External Shock model parameters, and thus to give Predictions
for high energy emission