GeV-TeV emission from inverse-Compton scattering processes in GRBs

Xiang-Yu Wang

Penn State University

Collaborators: P. Meszaros, Z.Li, Z. G. Dai & T. Lu

GRB-shock acceleration

Protons-

shock acceleration $\sim 10^{20} eV$ (e.g. Waxman 1995; Vietri 1995) photo-meson process:

(e.g. Waxman & Bahcall 1997; Bottcher & Dermer 1998)

 $\gamma + p \rightarrow \Delta^{+} \rightarrow \pi^{0} + p \qquad \qquad \pi^{0} \rightarrow \gamma + \gamma$

proton synchrotron radiation

(e.g. Vietri 1997; Totani 1998)

Electrons-

Shock acceleration: ~10 TeV

 $t_{cool} \sim t_{acc} \Rightarrow \gamma_{e,Max} \le 10^7$ X-ray afterglows $\rightarrow \gamma_{e,Max} > 10^5$

e.g. Li & Waxman 2006

Leptonic inverse Compton scattering

Inverse-Compton scattering in GRB shocks

Internal shock IC: e.g. Pilla & Loeb 1998; Razzaque et al. 2004

External shock ICreverse shock IC:forward shock IC:e.g. Meszaros , et al. 94;Wang et al. 01;Granot & Guetta 03e.g. Meszaros & Rees 94;Dermer et al. 00;Zhang & Meszaros 01

I will include...

- VHE photons from GRB early external shocks--very early afterglow phase
- VHE photons related to X-ray flares: X-ray flares photons are IC scattered by electrons in afterglow shocks

1. IC emission from very early external shocks

(Wang, Dai & Lu 2001 ApJ,556, 1010)

At deceleration radius, T_obs~10-100 s Forward shock---Reverse shock structure is developed

Energy spectra--- $\mathcal{V}f_{v} - \mathcal{V}$ (Wang, Dai & Lu 2001 ApJ,556, 1010)

At sub-GeV to GeV energies, the SSC of reverse shock is dominant; at higher energies, the Combined IC or SSC of forward shock becomes increasingly dominated

See also Wang, Dai & Lu 2001, ApJ,546, L33

One interesting GeV burst

Gonzalez et al. 03: Hadronic model

Leptonic IC model:

Granot & Guetta 03 Pe'er & Waxman 04 Wang X Y et al. 05, A&A, 439,957

2. VHE photons from x-ray flare-blast wave interaction

X-ray flares: late-time central engine activity

- ~30%-50% early afterglow have x-ray flares, Swift discovery
- Most striking flare GRB050502B discovered by Swift
- Flare light curves: rapid rise and decay
 - $\delta t/t$ <<1
- Afterglow decay consistent with a single power-law before and after the flare

X-ray flares occur inside the deceleration radius of the afterglow shock

IC between X-ray flare photons and afterglow electrons (Wang, Li & Meszaros 2006)

X-ray flare photons illuminate the afterglow shock electrons from inside

Flare photons is the dominant cooling source of afterglow electrons

 Flare photons is the dominant cooling source for electrons in the afterglow jet

$$U'_X = D^2 F_X / (\Gamma^2 R^2 c) > B^2 / 8\pi$$

$$F_X > 10^{-10} \epsilon_{B,-2} E_{52} t_3^{-1} D_{28}^{-2} \,\mathrm{erg cm}^{-2} \mathrm{s}^{-1}$$

 Flare photons make the afterglow electrons fast-cooling

$$F_X > 10^{-10} \epsilon_{B,-2} E_{52} t_3^{-1} D_{28}^{-2} \,\mathrm{erg cm}^{-2} \mathrm{s}^{-1}$$

 $\gamma_m \gtrsim \gamma_c$

$$F_X > 3 \times 10^{-10} E_{52}^{1/2} \epsilon_{e,-1}^{-1} n_0^{-1/2} t_3^{-1/2} D_{28}^{-2} \mathrm{erg cm}^{-2} \mathrm{s}^{-1}$$

IC GeV flare fluence-An estimate

So most energy of the newly shock electrons will be lost into IC emission

$$0.1 < \delta t/t < 1 \qquad \Psi = 10^{-7} - 10^{-6} \epsilon_{e,-1} E_{52} D_{28}^{-2} \mathrm{erg} \, \mathrm{cm}^{-2}$$
$$\varepsilon_{IC,p} \simeq 2\gamma_m^2 \varepsilon_X \simeq 3\epsilon_{e,-1}^2 E_{52}^{1/4} n_0^{-1/4} t_3^{-3/4} \left(\frac{\varepsilon_X}{1 \mathrm{keV}}\right) \mathrm{GeV}$$

X-ray flare peak energy

Klein-Nishina suppression is unimportant below TeV

 $\nu F_{\nu} ~~1/2$ and -(p-2)/2 before and after the break at $\varepsilon_{IC,p}$

Klein-Nishina cutoff $\gamma_e < \gamma_{e,M} = \Gamma m_e c^2 / \varepsilon_X$ $\varepsilon_{IC,M} = 2\gamma_{e,M}^2 (\varepsilon_X/\Gamma)\Gamma = 0.4E_{52}^{1/4}n_0^{-1/4}t_3^{-3/4} \left(\frac{\varepsilon_X}{1 \text{ keV}}\right)^{-1} \text{ TeV}$ $\tau_{\gamma\gamma} \simeq 0.1\sigma_T \frac{U'_X}{\varepsilon_X/\Gamma} (\Gamma c \delta t) = 0.3F_{X,-9}n_0^{1/2}t_3^{1/2}E_{52}^{-1/2}D_{28}^2 \left(\frac{\delta t}{t}\right) \left(\frac{\varepsilon_X}{1 \text{ keV}}\right)^{-1}$

Magic, Milagro, HESS, etc.

But at high redshift, the infrared background absorption will be important

Anisotropic IC scattering effect

Effect: decrease the power along the seed photon beam direction, but increase larger angle emission, about a half within 2/Γ (Wang, Li & Meszaros 2006)

e.g. Ghisellini 1978; Brunetti 2000; Fan & Piran 2006

- If $\theta_j \gg 1/\Gamma$, when integrated over angles, the received IC fluence will not be reduced.
- Suppose the sphere geometry: every direction has the same fluence.

The IC fluence will not change

 θ_s

Temporal behavior of the IC emission

 Not correlated with the X-ray flare light curves. IC emission will be lengthened by the afterglow shock angular spreading time and the anisotropic IC effect

Delayed GeV emission ---GRB940217

Summary

∫ IC in early external shocks ↓ IC of x-ray flares

Both are promising VHE photon sources for GLAST

- What could GLAST tell us?
- Origin of GeV photons (both prompt and delayed): Spectral and temporal properties
- > Maximum energy of the shock accelerated electrons : $\mathcal{E}_{e,Max} > ?$
- Magnetic field in the shocks: $L_{IC} / L_{syn} = U_{ph} / U_B$
- > ...