

GLAST observation of high-redshift GRBs

Elisabetta Bissaldi*, Francesco Longo[‡], Francesco Calura[†], Francesca Matteucci[†], Nicola Omodei^{**} and Guido Barbiellini[‡]

on behalf of the GLAST GRB science group

* Max-Planck Institute for Extraterrestrial Physics, Garching, Germany – ebs@mpe.mpg.de

- **‡ University & INFN Trieste, Italy**
- † University & DAUT Trieste, Italy
- ** INFN Pisa, Italy

Outline

• High redshift GRB distribution

- Association of GRBs with Type Ib/c SNe
- Study of **local and cosmic rates** by means of detailed chemical evolution models
 - Comparison with observed local SN_{Ib/c} rates and with calculated local GRB rates
 - GRB SN_{Ib/c} ratio estimates

→ Work accepted by A&A

• Detectability with GLAST – LAT

- Choice of a preferred SN_{Ib/c} distribution model to be adopted within the GLAST – LAT framework
- Simulation of a high redshift GRB population adopting the ${\rm SN}_{\rm Ib/c}$ distribution model

$SN_{Ib/c}$ rates

- Hypothesis SN_{Ib/c} candidate progenitors:
 1. Wolf-Rayet (WR) stars
 - Single massive stars
 - M ≥ 25 M_{\odot} (Maeder 1992)
 - **2.** Massive stars in close binary sistems

- M = 12 - 20M $_{\odot}$ (Baron 1992)

- **3.** Take both models into account!
- Use of detailed chemical evolution models for galaxies of different morphological types with different histories of star formation
 - Calura & Matteucci 2003 (CM03)
- Calculation of cosmic Star Formation Rates (SFRs) and derivation of SN_{Ib/c} rates accounting for all morphological types per unit comoving volume of the Universe.

Chemical evolution models

- <u>Chemical evolution models of</u> <u>galaxies:</u>
 - Depending on the morphological type
 - Spheroids and galactic bulges (Ellipticals)
 - (Matteucci 1994)
 - Irregulars
 - (Bradamante et al. 1998)
 - Spirals
 - (Chiappini et al. 2001)
- Basic ingredients:
 - Initial conditions
 - SFR
 - ψ(t)
 - Initial Mass Function (IMF)
 - **Φ(M)**

IMF

(Salpeter 1955)

First GLAST Symposium, Stanford • February 7, 2007

Local SN_{Ib/c} rate

Model III for each morphological type

- Models for spiral and irregular galaxies correctly reproduce the observational values
- Elliptical galaxies do not show $SN_{Ib/c}$ at present time (t ~ 13 Gyr)

Local $SN_{Ib/c}$ rate vs. GRB rates

- Models of **irregular galaxies** in agreement with the predicted GRB rates
 - Consistent with recent observations of host galaxies (Fruchter et al. 2006)

Results

- Estimate of the local **GRB SN**_{Ib/c} ratio (R)
 - Taking into account:
 - Different models adopted throughout the analysis
 - Uncertainties affecting the GRB beaming factor

	R _{MAX}	R _{MIN}
Model I ^(a, c)	$\sim 1.2 \times 10^{-2}$	$\sim 9.7 \times 10^{-4}$
Model II ^(b, c)	$\sim 4.9 \times 10^{-2}$	$\sim 4.1 \times 10^{-3}$
Model III ^(a, b, c)	$\sim 9.4 \times 10^{-3}$	$\sim 7.9 \times 10^{-4}$

– Ratio: R ~ 10⁻² – 10⁻⁴

- Consistent with recent results
 - (Podsiadlowsky 2004, Della Valle 2005, Le & Dermer 2006)
- Value is intrinsically small
 - Other mechanisms at play (rotation (Woosley & Heger 2006), metallicity (Fruchter et al. 2006), binarity (Mirabel 2004), asymmetric explosions (Maeda et al. 2006), ...)

First GLAST Symposium, Stanford • February 7, 2007

Cosmic SN_{Ib/c} rate

- Sum over the three different morphological types (Calura & Matteucci 2003, CM03)
 - The model predicts a peak at the redshift of galaxy formation due to the strong starburst in spheroids

Different cosmic SN_{Ib/c} rate models

Model III

First GLAST Symposium, Stanford • February 7, 2007

Cosmic GRB rates

 Comparison between predicted cosmic SN_{Ib/c} rate (Model III) and 3 theoretical cosmic GRB rate models, accounting for the uncertainties of the GRB beaming factor.

Lloyd-Ronning et al. (2002) Yonetoku et al. (2004) Matsubayashi et al. (2005)

> Different cosmic analytical GRB rate models obtained analyzing samples of GRBs with redshift estimates derived from empirical relations.

GRB simulations with the LAT

- Calculation of the number of GRB per year predicted for the LAT (see Nicola Omodei's poster P16.18)
- Fast Montecarlo simulations
 - Extrapolation of the **spectral parameters** from BATSE to the energy range of LAT (Preece et al. 2000)
 - Model dependent
 - GRB redshift distribution:
 - Long GRBs: SFR Model calculated by Porciani & Madau (2001)
 - Short GRBs: Binary Mergers Model calculated by Fryer et al. (1999)
 - EBL attenuation model
 - (Primack et al. 2005)

High z GRB detectability

• Main assumptions in the simulation:

- 1. Assumed a new **GRB rate** following the previously calculated $SN_{\rm Ib/c}$ rate:
 - Simulation of 2800 GRBs per year up to z ~ 10

• Redshift distribution

- Normalization to Omodei up to z < 6
- No changes to the short GRB redshift distribution

E. Bissaldi - MPE

High z GRB detectability

- Main assumptions in the simulation:
 - 2. Adopted the $E_P E_{iso}$ correlation (Amati et al. 2002)
 - Model independent
 - High-redshift extension
 - 3. Calculated E_{iso} and the Fluence in the BATSE energy band with cosmological corrections.

First GLAST Symposium, Stanford • February 7, 2007

High z results

- LAT GRB sensitivity:
 - Consistent with previous results up to z < 6
 - Population of GRBs at z > 6 is clearly visible!
 - High number of GRBs observed at energies lower than 1 GeV consistent with EBL attenuation

First GLAST Symposium, Stanford • February 7, 2007

Conclusions

- Study of GRBs as star formation tracers up to high z seems promising
 - Single WR or massive stars in close binary systems are good candidates
 - Irregular galaxies are favored
 - The large number of GRBs at high redshift predicted by the analyzed model for cosmic SN_{Ib/c} rate is in agreement with observational evidences of post-starburst spheroids at $z \sim 6.5$
- Possibility for GLAST to observe GRBs at z > 6
 - Probable detection of a population of cosmological GRBs

First GLAST Symposium, Stanford • February 7, 2007

To do list

Concerning the SNRIb/c models...

- Explore more mass ranges for both the single WR and the massive close binary components
- Optimize metallicity effects in the models
 - Low metallicity GRB hosts

Concerning the GLAST GRB simulations...

- Better cross-check of EGRET results
 - Extension of EGRET searches
- Inclusion in **complete simulations**
 - Background estimates
- Improvements in **GRB models**
 - Spectral evolution
 - Duration and variability at high z
- Validation of the **Amati relation** at high z