GLAST Measurements of Pion-decay and Neutron Emission in Solar Flares

R. J. Murphy, G. H. Share & C. D. Dermer

Neutral- and charged-pion production resulting from p-p and p- α interactions become significant in solar flares when the accelerated-ion energy spectrum is sufficiently hard. The threshold energies for these interactions are ~300 MeV and ~200 MeV nucleon⁻¹, respectively.

The decay of pions produces gamma-ray emission most easily observed at energies >10 MeV. Neutral pions decay into two ~70 MeV gamma rays in the pion rest frame which are Doppler shifted resulting in a broad feature centered at ~70 MeV. Charged pions decay into positrons and electrons which produce gamma-ray continuum emission resulting from brems-strahlung and annihilation of the positrons in flight.

GLAST will be able to measure the highest-energy portion of this pion-decay emission with excellent sensitivity. Comparison of such measurements with determinations of the accelerated-ion spectrum derived from deexcitation-line measurements at lower energies (as with the GBM) will probe the accelerated-ion spectrum at energies up to several GeV.

We discuss pion production in solar flares and how the decay emission depends on the accelerated-ion spectrum and on the magnetic field and density where the pions decay.

We also discuss neutron production in solar flares since GLAST will also be sensitive to neutrons.

Nuclear Interactions in Solar Flares

Yohkoh

RHESSI

Nuclear interactions of flare-accelerated ions mostly occur at the footpoints of magnetic loops

Nuclear Emission Processes

positrons

$$\begin{cases} p \\ \alpha \end{cases} + {}^{12}C \rightarrow {}^{11}C \rightarrow e^+ \\ p + \alpha \end{cases} \xrightarrow{p + p} \pi^+ \rightarrow e^+ \end{cases} \gamma_{511, \text{ cont.}}$$

pions

$$\left. \begin{array}{c} \mathsf{p} + \mathsf{p} \\ \mathsf{p} + \alpha \end{array} \right\} \rightarrow \left. \begin{array}{c} \pi^0 \\ \pi^{+,-} \end{array} \right\} \rightarrow \left. \begin{array}{c} \gamma \\ \mathsf{e}^{+,-} \rightarrow \gamma_{511, \, \text{cont.}} \end{array} \right.$$

pions are produced in interactions of the highest-energy accelerated ions and are observable via their decay radiation

Pion Production Cross Sections

Secondary Energy Distributions

Spectra of secondary products have been calculated using isobaric and scaling models along with pion production data (Murphy, Dermer & Ramaty 1987)

Radiation from Secondary Positrons and Electrons

electrons: bremsstrahlung continuum

positrons:

$$\begin{cases} \text{bremsstrahlung continuum} \\ e^+ - e^- \text{ annihilation radiation:} \end{cases}$$
 after thermalization $\rightarrow 511 \text{ keV line}^*$
in-flight \rightarrow continuum from Doppler-
broadened 511 KeV line

These processes compete with *Coulomb* and *synchrotron* energy losses

The radiation from these charged seconday electrons and positrons depends on the ambient *magnetic field* and *density*

*most of these photons are Compton-scattered out of the line as they escape the Sun because the pions are produced very deep in the solar atmosphere

Calculated Pion-decay Photon Spectra

The accelerated-ion spectral index affects the shape of the pion-decay photon spectrum:

1. harder spectrum \rightarrow broader π^0 component 2. different mix of charged- π components

The magnetic field and ambient density affect the shape of the pion-decay photon spectrum:

- 1. low density \rightarrow strong magnetic-field dependence
- 2. high density \rightarrow weak magnetic-field dependence

Calculated Pion-decay Photon Spectra (cont.)

The ratio of pion-decay emission to nuclear deexcitation-line emission depends very strongly on the steepness of the acceleratedion kinetic-energy spectrum

This ratio can be used to determine the accelerated-ion spectral index

Neutrons are "detectable" either directly or indirectly

Neutron production reactions

$$\begin{array}{c} \mathsf{p} + \mathsf{p} & \longrightarrow & \mathsf{n} + \dots \\ \mathsf{p} + {}^{4}\mathsf{He} & \longrightarrow & \mathsf{n} + \dots \\ \alpha + \alpha & \longrightarrow & \mathsf{n} + \dots \\ \alpha + \alpha & \longrightarrow & \mathsf{n} + \dots \\ p \\ \alpha \end{array}$$

and inverse reactions

Directly detected at Earth

Neutron Production (cont.) Energy Spectra

Future Plans

10

To take advantage of GLAST's sensitivity to high-energy gamma-ray emission, we will improve several areas of our pion-production computer model:

- 1. Improved cross sections
 - a. treat the production channels near threshold separately rather than the current inclusive treatment
 - b. improve treatment at highest energies by including the diffractive portion of the cross section (e.g., Kamae et al. 2004)
- 2. Extend the treatment to anisotropic accelerated-ion angular distributions
- 3. Extend the calculations to the higher gamma-ray energies (>3 GeV) to directly explore the shape of the accelerated-ion spectrum at such energies