The GLAST Background Model

J. F. Ormes¹, W. Atwood², T. Burnett³, E. Grove⁴, F. Longo⁵, J. McEnery⁶, T. Mizuno⁷ & S. Ritz⁶ on behalf of the GLAST mission team

Abstract In order to estimate the ability of the GLAST/LAT to reject unwanted background of charged particles, optimize the on-board processing, size the required telemetry and optimize the GLAST orbit, we developed a detailed model of the background particles that would affect the LAT. In addition to the well-known components of the cosmic radiation, we included splash and reentrant components of protons, electrons (e+ and e-) from 10 MeV and beyond as well as the albedo gamma rays produced by cosmic ray interactions with the atmosphere. We made estimates of the irreducible background components produced by positrons and hadrons interacting in the multilayered micrometeorite shield and spacecraft surrounding the LAT and note that because the orbital debris has increased, the shielding required and hence the background are larger than were present in EGRET. Improvements to the model are currently being made to include the east-west effect.

The details of the GLAST background flux model are outlined in this poster. Irreducible background will be produced by positrons annihilating in multilayer micrometeorite shield and protons, both galactic and albedo interacting in this same material. Positrons can annihilate in flight. Electrons and positrons can undergo a high fractional loss of energy by Bremsstrahlung. Protons can have interactions in which no resultant particle passes through a charge identifying counter (especially the anti-coincidence detector - ACD) while producing a gamma ray that is detected by the LAT. Also, in some orientations of the spacecraft, Earth Albedo gamma rays may not all be eliminated. The several components of this background are expected to vary along the orbit. The relative importance of each component will be determined by the orbit position and the arrival direction in local zenith pointing coordinates. By studying modulations of the background as a function of orbital parameters and arrival direction, the magnitude of these effects will be understood. The east-west effect will be helpful in separating components caused by particles of the opposite sign.

Galactic Cosmic Ray (GCR) Background Components for different Magnetic Latitudes (MagLat) from 0.1 to 0.8 radians

Orbit averaged background E*flux for estimating trigger rates and required downlink bandwidth.

Orbit averaged background differential model spectra for comparing with the input spectral data.

1	Fracti	on of	Event	s with	Reas	onab	le Tra	cks	
	. 1—								

The fraction of simulated events that leave a well defined track as a function of particle type and energy. This plot can be thought of as the efficiency for events thrown at the 6 m² sphere to make a trigger.

Above: Model GCR	0.0-0.1 down-pointing red triangles	
moove. Model CCR	0.1-0.2 green circles	\bigcirc
spectra in 0.1 fadiali	0.2-0.3 blue squares	
geomagnetic latitude	0.3-0.4 up-pointing yellow triangles	\triangle
bins. These model	0.4-0.5 purple stars	\bigstar
spectra agree with the	0.5-0.6 down-pointing blue triangles	
source data to within a	0.6-0.7 red squares	
few %.	0.7-0.8 up-pointing purple triangles	\triangle

Right hand column: Model Earth albedo spectra in 0.1 radian geomagnetic latitude bins. These spectra are based on measurements by AMS and, below 100 MeV, by a series of Russian experiments. Protons >100 MeV and e+>20 MeV can interact in the multilayered micrometeorite shield (2 x as thick as that of EGRET) and make photons indistinguishable from celestial photons. Reentrant and splash albedo are modeled separately for e-, e+ and protons.

The Earth's Gamma-ray Albedo as Observed by EGRET

The Earth albedo gammaray spectrum we use in the model is latitude independent. The eastwest effect is clearly seen in the image. We have incorporated the east-west effect for this background component. The east-west effect will be implemented soon for charged particles.

Input E*Flux plot for events that end up as residual gamma ray background by particle type. Comparing the top and bottom plots in this panel, we see that GCR protons are reduced by the factor $2 \ge 10^{-6}$ and one in a little over 100,000 positrons are creating a residual background.

Legend for plots above: Black, total; light green, GCR protons; lavender, GCR He; red, GCR electrons; blue, ight blue, albedo positrons; green, albedo protons; albedo electrons; and low albedo gammas.

rate as a

Mission elapsed time (s)

function of time for a typical day. The rate drops to zero during SAA passages. The orbital period is 5400 s. There are two peaks per orbit from the highest latitudes (north and south).

References

Aguilar et al., 2002, Physics Reports 366, 331-405. Bidoli et al.2002, Annales Geophysicae, 20, issue 10, 1693-1697. Dmitriev, A.V., et al., 1998, Advances in Space Research, Vol.21, No.12, 1797-1800.

Mikhailov, 2002, J.of Mod.Phys.A, 17, Ns12-13, 1695-1704. Petry, D., 2005, AIP Conf. Proc. 745, 709-714, astro-ph/0410487. Voronov, S.A., et al., 1991, Cosmic Res., Engl. Transl., 29(4), 567-575. Voronov, S.A., S.V.Koldashov, and V.V.Mikhailov, 1995, Cosmic Res., Engl.Transl., 33(3), 329-331.

Conclusions

• The background model accurately reflects the measured galactic cosmic ray fluxes from 10 MeV up to 100 GeV • Earth albedo positrons and electrons are modeled down to 10 MeV, but the uncertainties are increasingly large as we go below ~200 MeV reaching +/- 50% at 10 MeV. Sensitivity to background falls rapidly below 100 MeV.

• Estimating the uncertainty in the irreducible background depends on knowing the flux of positrons – results from Pamela will be able to improve the model and extend it to higher latitudes

- The east-west effect is being implemented
- This model is far more detailed than any other available model for satellites in low Earth orbit

Collaborating Institutions

The LAT is managed at Stanford Linear Accelerator Center (SLAC), The PI is Peter Michelson (Stanford) University of California at Santa Cruz²

Stanford University Naval Research Laboratory⁴ Sonoma State University

Hiroshima University⁷

RIKEN

Institute for Space and Astronautical Science

Institut National de Physique Nucleaire et de Physique des Particules (IN2P3) LLR, Bordeaux, Montpellier Commissariat a l'Energie Atomique (CEA), Saclay

Royal Institute of Technology (KTH) Stockholm University