

# **GLAST Burst Monitor**



## The calibration of the GLAST Burst Monitor detectors

by Andreas von Kienlin<sup>1</sup>, Elisabetta Bissaldi<sup>1</sup>, Giselher Lichti<sup>1,</sup> Helmut Steinle<sup>1</sup>, Michael Krumrey<sup>2</sup>, Martin Gerlach<sup>2</sup>, Roland Diehl<sup>1</sup>, Jochen Greiner<sup>1</sup>, Charles A. Meegan<sup>3</sup>, Gerald J. Fishman<sup>3</sup>, Chryssa Kouveliotou<sup>3</sup>, Colleen Wilson-Hodge<sup>3</sup>, William S. Paciesas<sup>4</sup>, Robert D. Preece<sup>4</sup>, Michael S. Briggs, Narayana Bhat<sup>4</sup>, Valerie Connaughton<sup>4</sup>, R. Marc Kippen<sup>5</sup>

[1] Max-Planck-Institut für extraterrestrische Physik (MPE); [2] Physikalisch-Technische Bundesanstalt (PTB); [3] NASA/Marshall Space-Flight Center (MSFC), [4] University of Alabama (UAH); [5] LANL

#### Abstract:

The GLAST Burst Monitor (GBM) is the secondary instrument on NASA's next Gamma-ray mission GLAST. It will augment the capabilities of GLAST for the detection of cosmic gamma-ray bursts by extending the energy range (20 MeV to > 300 GeV) of the Large Area Telescope (LAT) by two BGO-detectors (150 keV to 30 MeV) and 12 NaI detectors (10 keV to 1 MeV). GBM will also provide rapid on-board GRB locations and time-resolved spectra. GBM calibrations are performed on detector, instrument, and spacecraft levels, in order to establish a reliable instrumental response in energy and angular space. The calibrations on detector level were performed at MPE in 2005. All flight and spare detectors were irradiated with calibrated radioactive sources in the laboratory (from 14 keV to 4.43 MeV). The energy/channelrelations, the dependences of energy resolution, the effective areas and the angular responses were measured. Due to the low number of emission lines of radioactive sources in the low-energy range, calibration measurements in the energy range from 10 keV to 60 were performed with the Physikalisch-Technische keV Bundesanstalt (PTB) at BESSY synchrotron radiation facility in Berlin. The homogeneity of the NaI detectors was investigated in detail for energies around the iodine K edge. Our poster will summarize the results obtained with these measurements.

### The GBM-Nal(TI) Detectors (12 x):

#### The GBM-BGO Detectors (2 x):

#### **Purpose of Calibration:**

- provide performance verification of the GBM detectors. **provide benchmark data to compare with calculated detector** response data.
- provide accurate, well-characterized data for subsequent scientific analysis.

#### **The Calibration Setup:**







#### **Calibration Results - GBM-Nal(TI) Detector**

Summary of the measurements performed with the NaI(Tl) flight detectors. All detectors showed nearly the same performance and all fulfilled the specified requirements.











For further information, please contact: azk@mpe.mpg.de