

Gamma-ray Space Telescope

X-ray Observations of New Gamma-ray Pulsars Discovered by Fermi LAT

Nobuyuki Kawai and Yoshikazu Kanai (Tokyo Tech) On behalf of Fermi/LAT Collaboration

- Fermi LAT detected 55 pulsars including 24 new ones
- X-ray observations are essential for those newcomers
 - (1) X-ray counterparts can give unique information of precise positions in the sky if the sources cannot be found in the radio survey
 - (2) Gamma-ray studies cannot find any differences between radio-loud and radio-quiet pulsars but how about X-ray properties?

- 12 pulsars, 280 ks in total for AO4
- XIS nominal position
- No window/burst/timing option
- Detecting pulsation is NOT aimed

- 9 pulsars observed as of today

Observed Pulsars

J0357+32 J1907+06 J0633+0632 J1954+2836 J1413-6205 J1958+2846 J1459-60 J2238+59 and J1028-5819 ...discovered in radio but no X-ray observations - Right: Position in the P – P plot $-E = 5.8 \times 10^{33}$ $-2.8 \times 10^{36} \text{ erg/s}$ $-\tau_{c} = 20 - 547$ kyr

Observed Pulsars

- Position in the all-sky map

PSR J0633+0632 - Images

- τ_c = 59 kyr, E = 1.2 x 10³⁵ erg s⁻¹

1

- 24 ks exposure

0.5

- Soft point source + Extended emission

1.5

2

2.5

PSR J0633+0632 - Images

- τ_c = 59 kyr, E = 1.2 x 10³⁵ erg s⁻¹

1

- 24 ks exposure
- Soft point source + Extended emission

1.5

0.5

2.5

2

- Absorbed power-law model is the best

PSR J0357+32 - Images

- τ_c = 547 kyr, E = 5.8 x 10³³ erg s⁻¹
- 21 ks exposure
- Point source + Extended emission?

PSR J0357+32 - Images

- τ_c = 547 kyr, E = 5.8 x 10³³ erg s⁻¹
- 21 ks exposure
- Point source + Extended emission?

- Absorbed power-law model is the best

- X-ray counterparts are found for most of the targets
- Only one target lacks obvious counterpart... Nearby source is analyzed
- PL or PL + BB model is preferred

- Distance can be estimated with L_γ and F_γ for new pulsars - Assuming a relation $L_\gamma \propto E^{0.5}$

Spin-down Luminosity vs X-ray Luminosity

- New pulsars follow the relation $L_x \propto \dot{E}$, too ($\overset{\circ}{}_{Kawai}$ et al. 1997)
- No differences were found in this study

- We are observing Fermi LAT pulsars with Suzaku
- Faint X-ray counterparts are found for most of targets
- Power-law component found for all sources
- Properties similar to those of gamma-ray pulsars with radio emission

Further X-ray observations are ongoing with Chandra and XMM-Newton

