Supernova Remnants and Pulsar Wind Nebulae

Collaborators: D. Castro S. Funk Y. Uchiyama S. LaMassa O.C. de Jager A. Lemiere and others...

in the Fermi Era

Patrick Slane (CfA)

PWNe and SNRs

Interstellar Material

hot

Ejecta

cold

Gaensler & Slane 2006

- Pulsar Wind
 - sweeps up ejecta; shock decelerates flow, accelerates particles; PWN forms
- Supernova Remnant
 - sweeps up ISM; reverse shock heats ejecta; ultimately compresses PWN
 - self-generated turbulence by streaming particles, along with magnetic field amplification, promote <u>diffusive shock acceleration</u> of electrons and ions to energies exceeding 10–100 TeV

Patrick Slane (CfA)

Reverse

Pulsar

and Nebula Supernova

Blast Wave and Swept-up Shell

 R_{PWN}

Gamma-Ray Emission from SNRs

- Neutral pion decay
 - ions accelerated by shock collide w/ ambient protons, producing pions in process: $\pi^0 \rightarrow \gamma\gamma$
 - flux proportional to ambient density; <u>SNR-cloud</u> interactions particularly likely sites
- Inverse-Compton emission
 - energetic electrons upscatter ambient photons to $\gamma\text{-ray}$ energies
 - CMB, plus local emission from dust and starlight, provide seed photons
- Fermi observations, in combination with multi- λ data, will help differentiate between the two different mechanisms

Gamma-Ray Emission from SNRs

Gamma-ray emission depends on (and thus constrains):

- SNR age (need time to accumulate particles)
- acceleration efficiency (can be extremely high)
- electron-proton ratio in injection
- magnetic field (evidence suggests large amplification)
- ambient density (large density increases π^0 -decay emission)
- maximum energy limits (age, escape, radiative losses)

Young SNRs

- Young SNRs have fast shocks that clearly accelerate particles to high energies - X-ray observations reveal multi-TeV electrons, and dynamical measurements imply
 - efficient acceleration of ions as well
- But...
 - young SNRs generally haven't encountered high densities
 - maximum energies may be age-limited
- Thus, while very young SNRs should be $\gamma\text{-ray}$ sources, they are not likely to be exceptionally bright

G347.3-0.5/RX J1713.7-3946

- X-ray observations reveal a nonthermal spectrum everywhere in G347.3-0.5
 - evidence for cosmic-ray acceleration
 - based on X-ray synchrotron emission, infer electron energies of >50 TeV
- SNR detected directly in TeV $\gamma\text{-rays}$
 - γ-ray morphology very similar to
 X-rays; suggests I-C emission
 - spectrum suggests π^0 -decay, but lack of thermal X-rays is problematic

2009 Fermi Symposium, Washington, DC

G347.3-0.5/RX J1713.7-3946

- X-ray observations reveal a nonthermal spectrum everywhere in G347.3-0.5
 - evidence for cosmic-ray acceleration
 - based on X-ray synchrotron emission, infer electron energies of >50 TeV
- SNR detected directly in TeV $\gamma\text{-rays}$
 - γ-ray morphology very similar to X-rays; suggests I-C emission
 - spectrum suggests π^0 -decay, but lack of thermal X-rays is problematic
- Spectrum in Fermi band very different for leptonic and hadronic scenarios

 if the γ-rays are hadronic in origin, the emission in the Fermi LAT should be bright; weak or non-detection will favor a leptonic origin

See talk by Stefan Funk

Patrick Slane (CfA)

SNRs in Dense Environments

• The expected $\pi^0 \rightarrow \gamma \gamma$ flux for an SNR is

 $F(> 100 MeV) \approx 4.4 \times 10^{-7} \theta E_{51} d_{kpc}^{-2} n \text{ phot cm}^{-2} \text{ s}^{-1}$

where θ is a slow function of age (Drury et al. 1994)

- this leads to fluxes near sensitivity limit of EGRET, but only for large n
- Efficient acceleration can result in higher values for I–C $\gamma\text{-rays}$
 - SNRs should be detectable w/ Fermi for sufficiently high density; favor SNRs in dense environments or highly efficient acceleration
 - <u>expect good sensitivity to SNR-cloud</u> interaction sites (e.g. W44, W28, IC 443)

1 yr sensitivity for high latitude point source

SNRs in Dense Environments

• The expected $\pi^0 \rightarrow \gamma \gamma$ flux for an SNR is

 $F(> 100 MeV) \approx 4.4 \times 10^{-7} \theta E_{51} d_{kpc}^{-2} n \text{ phot cm}^{-2} \text{ s}^{-1}$

where θ is a slow function of age (Drury et al. 1994)

- this leads to fluxes near sensitivity limit of EGRET, but only for large n
- Efficient acceleration can result in higher values for I–C $\gamma\text{-rays}$
 - SNRs should be detectable w/ Fermi for sufficiently high density; favor SNRs in dense environments or highly efficient acceleration
 - <u>expect good sensitivity to SNR-cloud</u> interaction sites (e.g. W44, W28, IC 443)

See talk by Takaaki Tanaka

2009 Fermi Symposium, Washington, DC

G349.7+0.2

- G349.7+0.2 is a small-diameter SNR with high radio surface brightness
- HI absorption measurements indicate a distance of 22 kpc
 - one of the most luminous SNRs in the Galaxy

G349.7+0.2

- G349.7+0.2 is a small-diameter SNR with high radio surface brightness
- HI absorption measurements indicate a distance of 22 kpc
 - one of the most luminous SNRs in the Galaxy
- CO emission reveals nearby MC
 OH masers at v = 16 km s⁻¹ confirm
 - SNR shock-cloud interactions
- X-ray spectrum is dominated by bright thermal emission (Lazendic et al. 2005)
 - consistent with interaction with high density surroundings
 - high temperature suggestions fast shocks \Rightarrow efficient particle acceleration

Fermi LAT detects emission associated with G349.7+0.2 (Castro et al. – in prep)

 <u>likely evidence of π⁰-decay γ-rays from p-p collisions</u> in molecular cloud

Patrick Slane (CfA)

Gamma-Ray Emission from PWNe

Gamma-ray emission depends on (and thus constrains):

- PWN age
- maximum particle energy (depends on properties of both pulsar and nebula)
- magnetic field (decreases with time, allowing high-E particles injected at late phases to persist; also introduces loss breaks)
- ambient photon field (synchrotron self-Compton can be important)
- breaks in injection spectrum

Broadband Emission from PWNe

- Get synchrotron and IC emission from electron population & evolved B field
- Spin-down power is injected into PWN at time-dependent rate
 - results in spectral break that propagate to lower energy with time
- Based on studies of Crab Nebula, there may be two distinct particle populations

 relic radio-emitting electrons and those electrons injected in wind

 Fermi observations can provide constraints on maximum particle energies via synchrotron radiation, and on lower energy particles via IC emission

Connecting the Synchrotron and IC Emission

- Energetic electrons in PWNe produce both synchrotron and inverse-Compton emission
 - for electrons with energy E_{TeV} ,

$$\varepsilon_{\rm keV}^{\rm s} \approx 2 \times 10^{-4} E_{\rm TeV}^2 B_{-5}$$
 sync
 $\varepsilon_{\rm TeV}^{\rm ic} \approx 3 \times 10^{-3} E_{\rm TeV}^2$ inverse-

chrotron

Compton

• Magnetic field strength links IC photons with synchrotron photons from same electrons

 $\varepsilon_{\rm keV}^{\rm s} \approx 0.06 \varepsilon_{\rm TeV}^{\rm ic} B_{-5}$

- For low B, γ -ray emission probes electrons with lower energies than those that produce X-rays
 - <u>y-ray studies fill crucial gap in broadband</u> spectra of PWNe

Fermi Studies of 3C 58

2009 Fermi Symposium, Washington, DC

- Vela X is the PWN produced by the Vela pulsar
 - apparently the result of relic PWN being disturbed by asymmetric passage of the SNR reverse shock
- Elongated "cocoon-like" hard X-ray structure extends southward of pulsar
 - clearly identified by HESS as an extended VHE structure
 - this is not the pulsar jet

Patrick Slane (CfA)

Understanding Vela X: Fermi

- Broadband spectrum for PWN suggests two distinct electron populations and very low magnetic field (~5 μG)
 - radio-emitting population will generate IC emission in LAT band
 - spectral features may identify distinct photon population and determine cut-off energy for radio-emitting electrons

See Talk by Marianne Lemoine-Goumard

Patrick Slane (CfA)

• XMM observations (Funk et al. 2007) identify extended X-ray PWN

• Chandra observations (Lemiere et al. 2009) reveal neutron star within extended nebula

- $L_x \sim 10^{33.1} \text{ erg s}^{-1} \Rightarrow \dot{E} \sim 10^{36.7} \text{ erg s}^{-1}$
- X-ray and TeV spectrum well-described by leptonic model with B ~6 μG and t ~15 kyr
- example of late-phase of PWN evolution: X-ray faint, but γ -ray bright

- no known pulsar associated with source
- may be associated with SNR G338.3-0.0
- XMM observations (Funk et al. 2007) identify extended X-ray PWN
- Chandra observations (Lemiere et al. 2009) reveal neutron star within extended nebula
 - $L_x \sim 10^{33.1} \text{ erg s}^{-1} \Rightarrow \dot{E} \simeq 10^{36.7} \text{ erg s}^{-1}$
 - X-ray and TeV spectrum well-described by leptonic model with B ~6 μG and t ~15 kyr
 - example of late-phase of PWN evolution: X-ray faint, but γ -ray bright
- Fermi LAT reveals extended emission associated with source (Castro et al. in prep.)
 - flux appears consistent with PWN model predictions

Conclusions

- SNRs are efficient particle accelerators, leading to $\gamma\text{-ray}$ emission from both hadronic and leptonic processes
 - the associated spectra strongly constrain fundamental parameters of particle acceleration processes; Fermi LAT observations will help differentiate between emission mechanisms
- SNRs interacting with dense clouds are particularly strong candidates for $\gamma\text{-ray}$ emission
 - Fermi has already detected several, and more are being uncovered
- PWNe are reservoirs of energetic particles injected from pulsar
 - synchrotron and inverse-Compton emission places strong constraints on the underlying particle spectrum and magnetic field
- Fermi LAT has sensitivity and resolution to probe underlying electron spectrum in crucial energy regimes
 - observations of PWNe will complement multi- λ studies to constrain the structure and evolution of PWNe

Patrick Slane (CfA)

Understanding Vela X: XMM

- Broadband spectrum for PWN suggests two distinct electron populations
 - radio-emitting population will generate IC emission in LAT band
 - spectral features will identify distinct photon population and determine cut-off energy for radio-emitting electrons
- XMM large project (400 ks) to study ejecta and nonthermal emission now underway; images reveal considerable structure and spectral variation

Patrick Slane (CfA)

The Surrounding Ejecta: 3C 58

- Chandra reveals complex structure of wind shock zone and surroundings
- Spectrum reveals ejecta shell with enhanced Ne and Mg
 - PWN expansion sweeps up and heats cold ejecta

- Mass and temperature of swept-up ejecta suggests an age of ~2400 yr and a Type IIp progenitor, similar to that for Crab (Chevalier 2005)
- Temperature appears lower than expected based on radio/optical data

2009 Fermi Symposium, Washington, DC