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PWNe and  SNRs !

•  Pulsar Wind!
  - sweeps up ejecta; shock decelerates !
    flow, accelerates particles; PWN forms!

•  Supernova Remnant!
  - sweeps up ISM; reverse shock heats!
    ejecta; ultimately compresses PWN!
  - self-generated turbulence by streaming!
    particles, along with magnetic field amplification, promote diffusive shock acceleration!
    of electrons and ions to energies exceeding 10-100 TeV!

Gaensler & Slane 2006 
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•  Neutral pion decay!
  - ions accelerated by shock collide w/ ambient!
    protons, producing pions in process: π0 → γγ !
  - flux proportional to ambient density; SNR-cloud!
    interactions particularly likely sites!

•  Inverse-Compton emission!
  - energetic electrons upscatter ambient photons!
    to γ-ray energies!
  - CMB, plus local emission from dust and starlight,!
    provide seed photons!

•  Fermi observations, in combination with multi-λ
  data, will help differentiate between the two!
  different mechanisms!

Gamma-Ray Emission from SNRs !

Ellison et al. 2007 
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•  SNR age (need time to accumulate particles)!

•  acceleration efficiency (can be extremely high)!

•  electron-proton ratio in injection !

•  magnetic field (evidence suggests large amplification)!

•  ambient density (large density increases π0-decay emission)!

•  maximum energy limits (age, escape, radiative losses)!

Gamma-Ray Emission from SNRs !

Gamma-ray emission depends on (and thus constrains):!
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Young SNRs !

•  Young SNRs have fast shocks that clearly accelerate particles to high energies !
  - X-ray observations reveal multi-TeV electrons, and dynamical measurements imply !
    efficient acceleration of ions as well!

•  But…!
  - young SNRs generally haven’t encountered high densities!
  - maximum energies may be age-limited!

•  Thus, while very young SNRs should be γ-ray sources, they are not likely to!
  be exceptionally bright !

See talk by Stefan Funk 
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G347.3-0.5/RX J1713.7-3946!
•  X-ray observations reveal a nonthermal!
  spectrum everywhere in G347.3-0.5!
  - evidence for cosmic-ray acceleration!
  - based on X-ray synchrotron emission,!
    infer electron energies of >50 TeV!

•  SNR detected directly in TeV γ-rays!
   - γ-ray morphology very similar to !
     X-rays; suggests I-C emission!
   - spectrum suggests π0-decay, but lack!
     of thermal X-rays is problematic!

Acero et al. 2009!

XMM MOS!
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G347.3-0.5/RX J1713.7-3946!
•  X-ray observations reveal a nonthermal!
  spectrum everywhere in G347.3-0.5!
  - evidence for cosmic-ray acceleration!
  - based on X-ray synchrotron emission,!
    infer electron energies of >50 TeV!

•  SNR detected directly in TeV γ-rays!
   - γ-ray morphology very similar to !
     X-rays; suggests I-C emission!
   - spectrum suggests π0-decay, but lack!
     of thermal X-rays is problematic!

•  Spectrum in Fermi band very different!
  for leptonic and hadronic scenarios!
  - if the γ-rays are hadronic in origin, !
    the emission in the Fermi LAT should!
    be bright; weak or non-detection!
    will favor a leptonic origin !

See talk by Stefan Funk 
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SNRs in Dense Environments!

    

€ 

F(> 100MeV) ≈ 4.4 × 10−7θE51dkpc
−2 n phot cm−2 s−1

•  The expected π0   → γγ flux for an SNR is!

  where θ is a slow function of age (Drury !
  et al. 1994)!
  - this leads to fluxes near sensitivity limit!
    of EGRET, but only for large n !

•  Efficient acceleration can result in higher!
  values for I-C γ-rays!
  - SNRs should be detectable w/ Fermi for!
    sufficiently high density; favor SNRs !
    in dense environments or highly efficient!
    acceleration!
  - expect good sensitivity to SNR-cloud !
    interaction sites (e.g. W44, W28, IC 443)!

1 yr sensitivity for high latitude point source!

W28, W44, γ Cygni, IC 443…  
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SNRs in Dense Environments!

    

€ 

F(> 100MeV) ≈ 4.4 × 10−7θE51dkpc
−2 n phot cm−2 s−1

•  The expected π0   → γγ flux for an SNR is!

  where θ is a slow function of age (Drury !
  et al. 1994)!
  - this leads to fluxes near sensitivity limit!
    of EGRET, but only for large n !

•  Efficient acceleration can result in higher!
  values for I-C γ-rays!
  - SNRs should be detectable w/ Fermi for!
    sufficiently high density; favor SNRs !
    in dense environments or highly efficient!
    acceleration!
  - expect good sensitivity to SNR-cloud !
    interaction sites (e.g. W44, W28, IC 443)!

See talk by Takaaki Tanaka 

Abdo et al. 2009!

Example: W51C!
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G349.7+0.2!

1 arcmin!

ATCA! Chandra! •  G349.7+0.2 is a small-diameter SNR!
  with high radio surface brightness!

•  HI absorption measurements indicate!
  a distance of 22 kpc !
  - one of the most luminous SNRs in!
    the Galaxy!
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G349.7+0.2!
•  G349.7+0.2 is a small-diameter SNR!
  with high radio surface brightness!

•  HI absorption measurements indicate!
  a distance of 22 kpc !
  - one of the most luminous SNRs in!
    the Galaxy!

•  CO emission reveals nearby MC!
  - OH masers at v = 16 km s-1 confirm!
    SNR shock-cloud interactions  

•  X-ray spectrum is dominated by bright thermal emission (Lazendic et al. 2005)!
  - consistent with interaction with high density surroundings!
  - high temperature suggestions fast shocks ⇒ efficient particle acceleration!

Lazendic et al. 2005!
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G349.7+0.2!
Castro et al. – in prep.!

•  Fermi LAT detects emission associated with G349.7+0.2 (Castro et al. – in prep)!
  - likely evidence of π0-decay γ-rays from p-p collisions in molecular cloud!
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Gamma-Ray Emission from PWNe !

•  PWN age!

•  maximum particle energy (depends on properties of both pulsar!
  and nebula)!

•  magnetic field (decreases with time, allowing high-E particles !
  injected at late phases to persist; also introduces loss breaks)!

•  ambient photon field (synchrotron self-Compton can be important)!

•  breaks in injection spectrum!

Gamma-ray emission depends on (and thus constrains):!
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Broadband Emission from PWNe!

•  Spin-down power is injected into PWN !
  at time-dependent rate!
  - results in spectral break that propagate!
    to lower energy with time!

•  Based on studies of Crab Nebula, there !
  may be two distinct particle populations !
  - relic radio-emitting electrons and those!
    electrons injected in wind!

Zhang et al. 2008!

•  Get synchrotron and IC emission from  !
  electron population & evolved B field !

synchrotron!
inverse-!
Compton!
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•  Fermi observations can provide constraints on maximum particle energies via!
  synchrotron radiation, and on lower energy particles via IC emission!
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Connecting the Synchrotron and IC Emission!

€ 

εkeV
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•  Energetic electrons in PWNe produce both !
  synchrotron and inverse-Compton emission!
  - for electrons with energy ETeV,!

"" ""!
"  "" "      synchrotron!

"" " " inverse-Compton!

•  Magnetic field strength links IC photons with!
  synchrotron photons from same electrons!

•  For low B, γ-ray emission probes electrons with !
  lower energies than those that produce X-rays!
  - γ-ray studies fill crucial gap in broadband !
    spectra of PWNe!
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Fermi Studies of 3C 58!

•  Low-frequency break suggests possible!
  break in injection spectrum!

•  Torus spectrum requires change in !
  slope between IR and X-ray bands!
  - challenges assumptions for single power!
     law for injection spectrum!

•  Fermi LAT band probes CMB IC!
  emission from ~0.6 TeV electrons!
  - this probes electrons from the unseen!
    synchrotron region around Esyn = 0.4 eV!
    where injection is particularly complex!

Slane et al. 2004!
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•  Vela X is the PWN produced by the Vela pulsar!
  - apparently the result of relic PWN being disturbed by asymmetric passage of the!
    SNR reverse shock!

•  Elongated “cocoon-like” hard X-ray structure extends southward of pulsar!
  - clearly identified by HESS as an extended VHE structure!
  - this is not the pulsar jet!

Evolution in an SNR: Vela X!

Blondin et al. 2001!

t = 10,000 yr t = 20,000 yr t = 30,000 yr t = 56,000 yr 
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Understanding Vela X: Fermi!
de Jager et al. 2008!

•  Broadband spectrum for PWN suggests two distinct electron populations!
  and very low magnetic field (∼5 µG) !
  - radio-emitting population will generate IC emission in LAT band !
  - spectral features may identify distinct photon population and determine !
    cut-off energy for radio-emitting electrons!

LaMassa et al. 2008!

See Talk by Marianne Lemoine-Goumard!
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HESS J1640-465!

5 arcmin!

•  Extended source identified in HESS GPS!
  - no known pulsar associated with source!
  - may be associated with SNR G338.3-0.0!

•  XMM observations (Funk et al. 2007) identify extended X-ray PWN!

•  Chandra observations (Lemiere et al. 2009) reveal neutron star within extended nebula!
  - Lx ∼1033.1 erg s-1  Ė ~ 1036.7 erg s-1!

  - X-ray and TeV spectrum well-described by leptonic model with B ∼6 µG and t ∼15 kyr!
  - example of late-phase of PWN evolution: X-ray faint, but γ-ray bright!

LAT 1 yr!
sensitivity!

Lemiere et al. 2009!
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HESS J1640-465!

5 arcmin!

Castro et al. – in prep.!

•  Extended source identified in HESS GPS!
  - no known pulsar associated with source!
  - may be associated with SNR G338.3-0.0!

•  XMM observations (Funk et al. 2007) identify extended X-ray PWN!

•  Chandra observations (Lemiere et al. 2009) reveal neutron star within extended nebula!
  - Lx ∼1033.1 erg s-1  Ė ~ 1036.7 erg s-1!

  - X-ray and TeV spectrum well-described by leptonic model with B ∼6 µG and t ∼15 kyr!
  - example of late-phase of PWN evolution: X-ray faint, but γ-ray bright!

•  Fermi LAT reveals extended emission associated with source (Castro et al. – in prep.)!
  - flux appears consistent with PWN model predictions!
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Conclusions!
•  SNRs are efficient particle accelerators, leading to γ-ray emission from!
  both hadronic and leptonic processes!
  - the associated spectra strongly constrain fundamental parameters!
    of particle acceleration processes; Fermi LAT observations will help!
    differentiate between emission mechanisms!

•  SNRs interacting with dense clouds are particularly strong candidates!
  for γ-ray emission!
  - Fermi has already detected several, and more are being uncovered!

•  PWNe are reservoirs of energetic particles injected from pulsar!
  - synchrotron and inverse-Compton emission places strong constraints!
    on the underlying particle spectrum and magnetic field!

•  Fermi LAT has sensitivity and resolution to probe underlying electron !
  spectrum in crucial energy regimes!
  - observations of PWNe will complement multi-λ studies to constrain the!
    structure and evolution of PWNe!
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Understanding Vela X: XMM!

•  Broadband spectrum for PWN suggests two distinct electron!
  populations !
  - radio-emitting population will generate IC emission in LAT band !
  - spectral features will identify distinct photon population and determine !
    cut-off energy for radio-emitting electrons!

•  XMM large project (400 ks) to study ejecta and nonthermal emission now!
  underway; images reveal considerable structure and spectral variation!
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The Surrounding Ejecta: 3C 58!

•  Chandra reveals complex structure!
  of wind shock zone and surroundings!

•  Spectrum reveals ejecta shell with!
  enhanced Ne and Mg!
  - PWN expansion sweeps up and!
    heats cold ejecta!

•  Mass and temperature of swept-up!
  ejecta suggests an age of ~2400 yr!
  and a Type IIp progenitor, similar to!
  that for Crab (Chevalier 2005)!

•  Temperature appears lower than !
  expected based on radio/optical data!


