

AGNs with the Fermi-LAT: What we have seen

Benoît Lott CEN Bordeaux-Gradignan lott@cenbg.in2p3.fr

on behalf of the Fermi-LAT collaboration

"Blazars, other AGNs and Galaxy Clusters" Science Working Group

Key questions on blazars

- Emission mechanisms (for HE component)
 - Leptonic (IC of synchrotron or external photons) vs hadronic ($\pi^0 \rightarrow \gamma \gamma$, proton synchrotron)
- Emission location
 - Single zone for all wavebands (completely constraining for simplest leptonic models)
 - Opacity effects and energy-dependent photospheres
- Particle acceleration mechanisms
 - Shocks, magnetic reconnection, turbulence acceleration
- Jet composition
 - Poynting flux, leptonic, ions
- FSRQ/BLLac dichotomy
- Jet confinement
 - External pressure, magnetic stresses
- Accretion disk—black hole—jet connection
- Effect of blazar emission on host galaxies and galaxy clusters
- Blazars as probes of the extragalactic background light (EBL)

Populations

- all radio-loud
- ~ 97% blazars
- 3 radio galaxies: Cen A, NGC 6251, 3C 111
- Mostly FSRQs: FSRQ: 75% BL Lac: 25%
- Mostly (> 90%) low-energy peaked blazars (synchrotron peak in opt/UV)
- 13 blazars in first AGILE catalog

1)80

- 3-month dataset, TS>100
- 132 0FGL (Bright Source List) sources at |b|>0°
- 116 AGN associations with
 CGRaBS-CRATES

 (Healey+ 08)
 (Healey+ 08)
 - •BZCat (Massaro+ 08)
- 106 high-confidence 140_150_ associations:
- 58 FSRQs
- 42 BLLacs (40%) 10 HSPs
- 2 Radio Galaxies Cen A, NGC1275
- 4 of Unknown type

Abdo A. A. et al. 2009 ApJ 700, 597

EGRET sources: only 30%

Differences between Northern Hemisphere and Southern one (FSRQs: 7%, BLLACs: 25 %)

Posters: P5-188,S. Healey et al. P1-37,M. Shaw et al.

Redshift distributions

Population studies

Benoit Lott

Spectral properties in the γ -ray band

SED-based classification

P. Giommi's talk, Posters P5-188, 1-29, S.Cutini et al.

- Simultaneous Swift data enabled the determination of v_{syn} for 48 LBAS sources
- Calibration of relation with ν_{syn} estimated from $\alpha_{\text{ox}},\,\alpha_{\text{ro}}$
- subclasses assigned from v_{syn} LSP, ISP, HSP: low-, intermediate-, high-synchrotron peaked blazars, resp.

• LSP: $log(v_{syn}) < 14$ • ISP: $14 < log(v_{syn}) < 15$ • HSP: $log(v_{syn}) > 15$ with v_{syn} in Hz

photon index

0.5

2nd Fermi Symposium 11/09

- All (but one) FSRQs in 1LAC are LPBs
- Most BLLacs are HSPs

these correlations enable the « blazar sequence » concept to be revisited but beware of limitations!

1.5

redshift

2.5

Relative constancy of photon index

Non-power law spectra

- **General feature in FSRQs** and many LSP-BLLacs
- **Absent in HSP-BLLacs**
- **Broken power law model** seems to be favored
- $\Lambda\Gamma$ ~1.0 > 0.5 \rightarrow not from radiative cooling
- **Possible explanations:**
 - feature in the underlying particle distribution
 - Klein-Nishina effect
 - $-\gamma \gamma$ absorption effect
- Implications for EBL studies and blazar contribution to extragalactic diffuse emission

Challenge for modelers to account for the break and the relative constancy of spectral index with time

Temporal properties in the γ -ray band

The variable sky

~50 Astronomers telegrams (alert threshold:

F[E>100 MeV]~10⁻⁶ ph cm⁻² s⁻¹)

- Discovery of new gamma-ray blazars: PKS 1502+106, PKS 1454-354
- Flares from known gamma-ray blazars: 3C454.3, PKS 1510-089,3C273, AO 0235+164, PSK 0208-512, 3C66A, PKS 0537-441
- Galactic plane transients: J0910-5041, 3EG J0903-3531

Flare Advocates issue alerts and feed the Fermi blog

Poster P5-203, S. Ciprini et al.

2nd Fermi Symposium 11/09

Benoit Lott

• $1/f^{-\alpha}$ with α between 1 (« flicker », « pink-noise ») and 2 (« shot noise », «Brownian») with peak around 1.6-1.7 (similar to optical or radio)

•Caveat: weekly and 3-day bin light curves; mid- long-term temporal behavior investigated so far

No significant difference in PDS shape between BLLacs and FSRQs but a tendency for the former to be slightly steeper. BLLacs have also a lower fractional variability.

Multi-frequency studies

MW opportunities: Poster P5-199, D. Thompson

Benoit Lott

Multi-wavelength campaign on 3C279

Preliminary

- Bright FSRQ, z=0.536
- Intensive Multiwavelength Campaign~300 d
- Coincidence of γ -ray flare and change in optical polarization (KANATA)
- Drop from 30% to 5%
- EVPA changes by 208°
- Orphan X-ray flare detected
- Polarization event lasts 20 days
- Co-spatiality of γ -ray and optical emissions
- Non-axisymmetric structure of the emission zone
- Curved trajectory along the jet
- r_{event}>10⁵ Schwarzschild radii

M. Hayashida's talk

MW campaigns on

- Mkn421, Mkn501, 1ES 1959+650 (Poster P1-53, D. Paneque et al., P1-17, A. Konopelko et al.)
- PKS 2155-304 (Poster P1-24, D. Sanchez et al.)
- 3C 66A (w. Veritas)
- PKS 1424+240 (w. Veritas, poster P1-15, A. Furniss et al.)
- RGB J0710+591 (w. Veritas, poster P1-30, P.Fortin et al.)
- PKS2005-489 (w. HESS, poster P1-35, S. Kaufmann et al.)

and more....

Enormous set of data!

HSP-BLLac, z=0.116 nonflaring,low/quiescent state First simultaneous

SED including GeV-TeV

Unexpected correlations:

strong correlation
 between optical and
 TeV fluxes

 X-ray flux varies independently of TeV flux

correlation between
 X-ray flux and GeV
 photon index
 Challenge simple SSC
 models

Aharonian, F. et al. 2009, ApJL, 696 L150 contact authors: B. Giebels & J. Chiang

MW campaign on Mrk421

- 4.5 months long (Jan 20th June 1st, 2009)
- ~20 instruments participated covering frequencies from radio to TeV

• 2-day sampling at at optical/X-ray and TeV (when possible: breaks due to moon, weather...)

21/28 TeV AGNs detected by Fermi-LAT (5.5 months of data), now 25/30

mostly BLLacs, mostly HSPs

•2 RGs: Centaurus A, M87

arXiv:0910.4881 (Poster P1-18 S. Fegan et al.)

Name	TS	Parameters of fitted power-law spectrum Flux (>200 MeV) Photon Index Decorr		Decorr.	Highest energy photons		Probability of constant flux	
		$F + \Delta F_{\text{stat}} + \Delta F_{\text{sug}}$	$\Gamma + \Delta \Gamma_{\text{stat}} + \Delta \Gamma_{\text{sug}}$	energy	1 st	5^{th}	10 day	28 day
	[1]	$[10^{-9} \text{cm}^{-2} \text{s}^{-1}]$	[1]	[GeV]	[GeV]	[GeV]	[1]	[1]
3C 66A	2221	$96.7 \pm 5.82 \pm 3.39$	$1.93\pm0.04\pm0.04$	1.54	111 ^a	54	< 0.01	< 0.01
RGB J0710+591	42	$0.087 \pm 0.049 \pm 0.076$	$1.21\pm0.25\pm0.02$	15.29	74	4	0.98	0.94
S5 0716+714	1668	$79.9 \pm 4.17 \pm 2.84$	$2.16 \pm 0.04 \pm 0.05$	0.82	63	9	< 0.01	< 0.01
1ES 0806 + 524	102	$2.07 \pm 0.38 \pm 0.71$	$2.04 \pm 0.14 \pm 0.03$	1.54	30	4	0.05	< 0.01
1ES 1011+496	889	$32.0 \pm 0.27 \pm 0.29$	$1.82 \pm 0.05 \pm 0.03$	1.50	168	32	0.54	0.50
Markarian 421	3980	$94.3 \pm 3.88 \pm 2.60$	$1.78\pm0.03\pm0.04$	1.35	801	155	0.06	0.02
Markarian 180	50	$5.41 \pm 1.69 \pm 0.91$	$1.91 \pm 0.18 \pm 0.09$	1.95	14	2	0.98	0.54
1ES 1218+304	147	$7.56 \pm 2.16 \pm 0.67$	$1.63 \pm 0.12 \pm 0.04$	5.17	356	31	0.53	0.06
W Comae	754	$41.7 \pm 3.40 \pm 2.46$	$2.02 \pm 0.06 \pm 0.05$	1.13	26	18	0.01	< 0.01
3C 279	6865	$287 \pm 7.13 \pm 10.2$	$2.34 \pm 0.03 \pm 0.04$	0.59	28	21	< 0.01	< 0.01
PKS 1424+240	800	$34.35 \pm 2.60 \pm 1.37$	$1.85\pm0.05\pm0.04$	1.50	137	30	< 0.01	0.16
H 1426+428	38	$1.56 \pm 1.05 \pm 0.29$	$1.47 \pm 0.30 \pm 0.11$	8.33	19	3	0.83	0.39
PG 1553+113	2009	$54.8 \pm 3.63 \pm 0.85$	$1.69 \pm 0.04 \pm 0.04$	2.32	157	76	0.40	0.54
Markarian 501	649	$22.4 \pm 2.52 \pm 0.13$	$1.73\pm0.06\pm0.04$	2.22	127	50	0.57	0.18
1ES 1959+650	306	$25.1 \pm 3.49 \pm 2.83$	$1.99 \pm 0.09 \pm 0.07$	1.60	75	21	0.91	0.29
PKS 2005-489	246	$22.3 \pm 3.09 \pm 2.14$	$1.91\pm0.09\pm0.08$	1.01	71	8	0.86	0.97
PKS 2155-304	3354	$109 \pm 4.45 \pm 3.18$	$1.87 \pm 0.03 \pm 0.04$	1.13	299	46	< 0.01	< 0.01
BL Lacertae	310	$51.6 \pm 5.81 \pm 12.2$	$2.43 \pm 0.10 \pm 0.08$	0.85	70	4	0.61	0.23
1ES 2344+514	37	$3.67 \pm 2.35 \pm 1.62$	$1.76 \pm 0.27 \pm 0.23$	5.28	53	3	0.76	0.46
M 87	31	$7.56 \pm 2.70 \pm 2.24$	$2.30 \pm 0.26 \pm 0.14$	1.11	8	1	0.43	0.57
Centaurus A	308	$70.8 \pm 5.97 \pm 5.80$	$2.90\pm0.11\pm0.07$	0.47	6	4	0.38	0.97

Most of the bright TeV blazars have been in low states since Fermi launched. Low variability in the GeV range.

Search for new TeV emitters (poster P5-190, P. Fortin et al.)

Radio- γ -ray connection

Non-blazar sources

Radio (non-blazar) Galaxies

- Cen A (Poster P1-14, J. Finke et al.)
 - nearest radio galaxy, FRI, D=3.7 Mpc, seen by EGRET and HESS
 - Fermi-LAT detection. Γ : 2.71 ± 0.09, TS=318
 - two-zone SSC model required to reproduce whole SED
- M 87 (Poster P1-49, W. McConville et al.)
 - giant radio galaxy, FR1, D=16Mpc
 - detected by HESS, VERITAS, MAGIC
 - Γ : 2.26 ± 0.13, $F_{8:}$ 2.45 ± 0.6, TS=108
 - No indication of variability over 11 months
 - good fit of SED with one-zone SSC (e from sub-pc core)
- NGC 1275 (Poster P1-33, J. Kataoka et al.)
 - "cooling core" cluster
 - detected by COS-B, not by EGRET
 - LAT flux 6x larger than EGRET upper limit
 - « short-term» variability points to an AGN

+ 7 other radio galaxies (E.Cavazzuti's talk)

Benoit Lott

2nd Fermi Symposium 11/09

Other class?

- PMN J0948+0022, Narrow-line, radio loud Sy1 (contact: L. Foschini)
 - SED similar to FSRQ, less powerful
 - Radio emission is strongly variable and with flat spectrum, suggests
 Doppler boosting, now confirmed by LAT
 - More similar sources detected

Abdo, A. A. et al. 2009, ApJ, 699, 976

Limits on Galaxy clusters

Extragalactic Background Light

Extragalactic Background Light (EBL)

Redshift

- LAT-detected blazars at high z have soft spectra, many exhibiting breaks
- Little-constraining results provided by initially planned method based on

 $\frac{F\left(E > 10\,GeV\right)}{F\left(E > 1\,GeV\right)} \quad \text{ratio}$

• However, highest-energy photons from distant blazars rule out models that predict the highest opacities.

Summary

- Fermi has discovered hundreds of new sources, proving that blazars dominate the extragalactic sky :
 - BLLacs (x~20 wrt EGRET), many being HSPs
 - FSRQs (x~5 wrt EGRET)
 - majority of TeV AGNs.

making detailed population studies possible.

- Important spectral properties (correlation of photon index with blazar class, spectral breaks, relative constancy of photon index with flux) have been observed.
- Variability time scales were observed ranging from sub-day to several months.
- Many multifrequency studies heve been triggered by Fermi observations, providing time-resolved SEDs and interband (radio, optical, X-ray, TeV) temporal correlation.
- The emission of gamma-rays from the lobes of Cen A has been discovered.
- Many new non-blazars sources have been detected (Radio galaxies, NRLSy1, Cen A giant radio lobes).
- Constraints on EBL opacity have been obtained.

A lot of novel features and correlations to digest, but ultimately a better understanding of gamma-ray emitting AGNs will emerge.

2nd Fermi Symposium 11/09