

Gamma-Ray Bursts and Fermi: <u>What We Have Seen</u>

Nicola Omodei INFN Pisa

On behalf of the Fermi LAT and GBM Collaborations

2009 Fermi symposium – Washington D.C.

- Gamma-Ray Bursts are violent explosion happening at cosmological distances (up to z=8.2)
- The "Prompt phase": Intense flashes of gamma-rays lasting from few millisecond to hundreds of seconds.
- The "afterglow phase": longer lasting emission, discovered in Xrays and found in optical, radio

High statistic was collected at keV-MeV energies by BATSE The prompt spectrum at these energy is typically described by a smoothly broken power law, first introduced by **David Band**, in 1993, and known as the **Band function** Only little was known at GeV energies before the Fermi era

GRB Observations by Fermi

- Larger FOV (>2.4 sr): more GRB samples
- Larger effective area: better statistics
- Less dead time: detailed lightcurve, time-resolved analysis
- Wider energy coverage: up to > 300 GeV

Space Telescope

Fermi Gamma-ray Burst Monitor Views entire unocculted sky Nal: 8 keV - 1 MeV BGO: 200 keV - 40 MeV

How do we observe?

- Burst Advocates (BGM and LAT) on shift every day
 - Look at every GBM and LAT alert, and search in the data
 - In case of LAT detection, LAT sent notices via GCN
- GBM and LAT team work together in analyzing and interpreting LAT Fermi data
 - Circulars are sent via GCN in case something is found
- LAT "full statistic", what does this mean?
 - We can select events that trigger the detector, and passed the onboard-gamma filter (~400 Hz)
 - Good only for time analysis.
- Joint fitting with the GBM the Prompt emission
 - RMFIT, LAT "transient" events >100 MeV
- Long lived emission studies
 - "Diffuse" events for long integration time
 - Likelihood fit, standard LAT software

12/10/09

- GBM: 252 GRB/yr
- LAT: 9 GRB/yr

12/10/09

- The Onset between Low-Energy and High-Energy emission
- Temporal Extended High Energy Emission
- Deviation from a pure Band function: the extra component

- The Onset between Low-Energy and High-Energy emission
- Temporal Extended High Energy Emission
- Deviation from a pure Band function: the extra component

The Onset between Low-Energy and High-Energy emission

- The "lack of the first peak": that was a surprise!
- Absorption?

Gamma-ray Space Telescope

> You would expect a cut off in the spectrum...

12/10/09

- Rapid soft to hard evolution in (a) to (b)
- Gradual decrease of E_{peak} from (b) to (d)
- Spectrum consistent with a Band function, no roll-off!

- The Onset between Low-Energy and High-Energy emission
- Temporal Extended High Energy Emission
- Deviation from a pure Band function: the extra component

GRB 080916C

- HE (>100 MeV) emission shows different temporal behavior
 - Temporal break in LE emission while no break in HE emission
 - Indication of cascades induced by ultra-relativistic ions?
 - or angle-dependent scattering effects?

Gamma-ray Space Telescope

N. Omodei - Fermi Symposium 2009

Delayed HE Emission from Other LAT GRBs

- Temporal onset of high-energy emissions (coincident with 2nd GBM pulse)
 - Common origin for this emission in low and high energies (Not statistically significance, here)
- Highest energy is very late (GRB 080825C)
 - No detectable low energy emission
- For the first time, temporal extended emission seen also in short burst!
- Delayed emission also detected by Agile (080514B, Giuliani '08, 090510, Giuliani '09)

Gamma-ray Space Telescope

N. Omodei - Fermi Symposium 2009

The Fermi-Swift era of the high-energy afterglows

Gamma-ray Space Telescope

> Significant emission (TS>25) up to T0+200s N o evidence of a spectral evolution LAT lightcurve best fit b Blackowlet Taw: a = -1.38 +/- 0.07 White : LAT (prompt) Blue : GBM (prompt)

> reen : BAT (triggered on prompt) Red : XRT (after T0+100s) Violet : UVOT (after T0+100s)

Contraction tracepoint to the second to the

- Onset in interval "a"
 - Emission >100
 MeV starts few second after the emission at low energies
- Extended high energy emission
 - Highest energy event
- Emission above 100 MeV is "spiky"
 - Very narrow
 spike (0.1 s) from
 few keV to >100
 MeV energies

- The Onset between Low-Energy and High-Energy emission
- Temporal Extended High Energy Emission
- Deviation from a pure Band function: the extra component

Sermi Finally, clear detection of an extra component

Gamma-ray Space Telescope

Best fit spectrum is a band function (smoothly broken power-law) + power-law component. Challenge for theoretical models:

10⁵

 10^{6}

10⁷

Energy (keV)

10³

10

10²

GRB 090902B

-Can the **SSC** model reproduce the excess <50keV?

-Hadronic models providing hard component with excess at low and high energies?

-Can Early afterglow models produce a >10 GeV emission?

-Two non-thermal power-law + thermal 17 component?

1.5

2

Time since GRB trigger

2.5

0

- The GBM light curve consists of a very hard narrow pulse on top of a broader emission episode, with a duration (T90) of about 7.7s (8-1000 keV)
- GRB occurred outside LAT FoV
 - (86 deg to boresight)
- Significant increase of raw TKR rates coincident with GBM trigger
 - Only low energy events can trigger the instrument (thanks to the multiple scattering) with energies below ~140 MeV (selection effect)
- Not delayed wrt GBM pulse
- Did not last longer than GBM pulse

Summary of LAT Bursts

Gamma-ray Space Telescope								Eer Fer
GRB	duration	# of events > 100 MeV	# of events > 1 GeV	delayed HE onset	Long- lived HE emission	Extra Compone nt	Highest Energy	Redshift
080825C	long	~10	0	?	~	x	~600 MeV	
080916C	long	>100	>10	~	~	?	~ 13.2 GeV	4.35
081024B	short	~10	2	~	~	?	3 GeV	
081215A	long	_	_	_	_		_	
090217	long	~10	0	x	x	x	~1 GeV	
090323	long	~20	>0	?	~	?	?	3.57
090328	long	~20	>0	?	~	?	?	0.736
090510	short	>150	>20	~	~	~	~31 GeV	0.903
090626	long	~20	>0	?	~	?	?	
090902B	long	>200	>30	~	~	~	~ 33 GeV	1.822
090926	long	>150	>50	~	~	~	~20 GeV	2.1062

12/10/09

Sermi

Delay Onset?

Gamma-ray Space Telescope

- Not expected, this is really new stuff
- Deviation from the Band function?
 - 941017 (Gonzalez, Nature 2003 424, 749)
 - The extension below 50 keV is new!
- Extended GeV emission?
 - some clues from Egret (940215 Hurley at al) and Agile (Giuliani et al. 2008). But now we have the statistic needed to make a detail study of GeV afterglows. Also crucial to have Swift in orbit! Band, D. L. et al. 2009, ApJ
- How about the number of GRBs?
 - Consistent within fluctuation with what we predicted (considering BATSE burst beta<-2).

See Dan Kocevski's talk on "Fermi-LAT Upper Limits for Fermi GBMdetected Gamma-ray Bursts"

- Relativistic motion of the emitting shell:
 - A relativistic motion of the shell allows higher energy events in dense region to escape.
 - Observing high-energy events correlated with the fast variability allows to constrain to the speed (G_{min}) of the emitting shell.
 - Assuming high-energy emission is spatially consistent with the low energy emission: GRB060916C, GRB090510, GRB090902B both have consistently $G_{min} \sim 1000$ (See Soeb Razzaque poster)
- Lorentz Invariance Violation
 - Constrain the dispersion of the speed of light:
 - 090510, better limit so far.
 - See V. Vasileiou's Talk
- Constraining EBL models
 - See next...

- GRB can be used as a probe for testing the transparency of the Universe, and constraining models !
- Statistic is needed!

See Soeb Razzaque's Poster

- Fermi is performing extremely well in GRB observation, the LAT already doubled the number of GRBs detected above 100 MeV
- High energy emission (at GeV) observed in both long and short bursts
- Some observed properties
- Delayed onset between LAT and GBM ("the missing peak")
 - Characteristic Spectral evolution
 - Separate region from initial GBM emission (Internal Shocks?)
 - Not seen in 090217
 - Both in long and short bursts
- Deviation from the ordinary Band-function
 - Extra component dominates in few cases (both in long and shorts)
- Long lived high-energy emission detected both in Long and Short bursts
- Fundamental physics tested (LIV, Gamma-min, EBL)

YELLOW SLIDE MEANS BACKUP