The Collimation and Energetics of Fermi-LAT Gamma-Ray Bursts

S. Bradley Cenko, Fiona Harrison, Dale Frail, Poonam Chandra, Josh Bloom, Derek Fox, Nat Butler, Eran Ofek, Shri Kulkarni, Bethany Cobb, Dan Perley, Alex Filippenko

GRB Overview

Meszaros, 2001

Prompt Energy ($E_{Y,iso}$) + Afterglow Energy ($E_{KE,iso}$) + Collimation (θ)

Motivation

Frail et al. 2001

Cenko et al. 2009

Beaming-corrected energetics fundamental to our understanding of progenitors, physics, and cosmological utility

Motivation

Frail et al. 2001

Cenko et al. 2009

Beaming-corrected energetics fundamental to our understanding of progenitors, physics, and cosmological utility

Motivation

Frail et al. 2001

Cenko et al. 2009

Beaming-corrected energetics fundamental to our understanding of progenitors, physics, and cosmological utility

E_{Y,iso}: Prompt Energy

Broad coverage \Rightarrow Accurate and precise $E_{Y,iso}$

Why Fermi I: Spectral Coverage

Broad coverage \Rightarrow Accurate and precise $E_{Y,iso}$

EKE, iso: Afterglow Energy

Self-similar evolution

Synchrotron spectrum

Panaitescu & Kumar, 2001

Afterglow energy indirectly inferred from modeling of broadband emission

θ: Beaming Angle

- To avoid "energy catastrophe", GRB ejecta must be highly beamed (θ ~ I-I0 degrees)
- Relativistic beaming effects cause achromatic steepening in light curves when γ ~ θ⁻¹
- By measuring time of "jet break", infer collimation angle of outflow

Harrison et al. 1999

Why Fermi II: Large E_{Y,iso}

A clean and simple way to target large $E_{Y,iso}$

Our Fermi Energetics Campaign

- Response to joint Fermi / VLA announcement
- Broadband (radio, optical, and X-ray) follow-up of LAT GRBs to constrain collimation and energetics
- Cycle I GRBs: 090323, 090328, 090902B, and 090926A (no radio)

Results I: Energetics

After beaming correction, energetic requirements ~ 10⁵¹ - 10⁵² erg

Results II: Density

Low circumburst densities consistent with expectation of low mass-loss

Results II: Density

Low circumburst densities consistent with expectation of low mass-loss

Conclusions

- Use broadband afterglow observations to constrain collimation and energetics from 4 Fermi LAT GRBs
- All 4 tightly collimated ($\theta < 10 \text{ deg}$)
- Energy release ~ 10^{51} 10^{52} erg
- Low circumburst densities (consistent with rapidly rotating progenitors)
- Importance of follow-up observations (redshifts)