

Detection of GeV Emission from Starburst Galaxies with the Fermi LAT

Keith Bechtol on behalf of the Fermi LAT Collaboration

4 November 2009

- Fermi LAT has detected steady, point-like, emission above 200 MeV from two starburst galaxies
 - M82 (6.8σ)
 - NGC 253 (4.8σ)
- Diffuse gamma-ray emission from star-forming galaxies
 - Starburst galaxies M82 and NGC 253
- Observations and results
 - Detection significance maps
 - Point-like and steady
 - Integral fluxes consistent with galactic diffuse emission
- Interpretation
 - Correlate star-formation with enhanced cosmic-ray intensity

The most striking feature of the GeV gamma-ray sky is the diffuse emission from our own galaxy

Credit: NASA/DOE/Eermi LAT Collaboration

Cosmic rays interacting with interstellar medium

- $CR_{protons}$ + gas \rightarrow neutral pion-decay
- $CR_{electrons}$ + radiation fields \rightarrow inverse Compton
- $CR_{electrons}$ + ambient protons \rightarrow bremsstrahlung

Starburst Galaxies

4 November 2009

- Starburst galaxies distinguished by regions of rapid star formation, 10-1000 × Milky Way rate
 - Correspondingly high supernovae rates
 - Dense clumps of molecular gas
 - Highly luminous at infrared wavelengths, radio correlation
- M82 and NGC 253
 - Two closest starburst galaxies (~3 Mpc)
 - Edge-on viewing angles
 - Small (~100 pc scale) starburst regions
 - Star formation rate ~10 × Milky Way rate
 - Lack active nuclei
 - Extensively studied in multiple wavebands, detailed modeling/predictions

- Observation periods
 - 11 months (August 2008 to July 2009)
 - Exclude time periods when Earth limb enters field of view (rocking angle cut at 43°)
- Event selection
 - Energy > 200 MeV
 - Diffuse class (cosmic-ray background contamination < 10 %)
 - Zenith angle < 105°</p>
 - Post launch instrument response functions (P6_V3)
- Model the region
 - 10° radius region of interest
 - Galactic diffuse (template / hybrid / ring) + isotropic component
 - Include all significantly detected LAT sources within region of interest (1st year Catalog)

Gamma-ray Space Telescope

Detection Significance Maps

Galactic diffuse, isotropic diffuse, and point sources subtracted

Appear as LAT point sources, starburst regions unresolved

7

Spatial extension upper limits

- Gaussian model, radius which contains 68 percent of flux (R₆₈)

	R ₆₈ 95% confidence upper limit	Disk extent (optical)
M82	0.18°	0.19°
NGC 253	0.30°	0.45°

Both sources consistent with constant flux level

Monthly count of the photons in the direction of each source (Aug 08 - Jul 09)

Observed integral fluxes consistent with models of diffuse galactic gamma-ray emission, but data do not yet tightly constrain spectral shapes

	Flux (>100 MeV) (10 ⁻⁸ ph cm ⁻² s ⁻¹)	Photon Index
M82	1.6 ± 0.5 _{stat} ± 0.3 _{sys}	2.2 ± 0.2 _{stat} ± 0.05 _{sys}
NGC 253	0.6 ± 0.4 _{stat} ± 0.4 _{sys}	1.95 ± 0.4stat ± 0.05 _{sys}

Gamma-ray Space Telescope **Diffuse Gamma-ray Emission from Galaxies**

- Enhanced cosmic-ray intensity required to explain the observed starburst gamma-ray fluxes
- Supernovae trace massive star formation
 - Supernovae remnants are probable source of galactic cosmic rays, although data not yet conclusive
- Beware!

Gamma-ray Space Telescope

- Star-formation rate and gas density non-uniform throughout galaxies (Resolved LMC gamma-ray image)
- Large uncertainty in distance measurements

Compare gamma-ray luminosity and product of supernovae rate and gas mass in each galaxy

GeV to TeV Gamma-ray Connection

- TeV detections summer 2009
 - NGC 253 (H.E.S.S.)
 - M82 (VERITAS)

Gamma-ray Space Telescope

- Fermi LAT results combined with the TeV data will fill in spectral energy distributions
 - Discern spectral shapes with greater certainty, constrain emission mechanisms
- TeV observations confirm steady sources
- Starbursts unresolved, TeV emission predominantly in central region
- LAT all-sky survey can point out additional candidates for TeV observatories

Right Ascension

- Two starburst galaxies, M82 and NGC 253, detected in 1st year of the Fermi mission
 - New class of gamma-ray sources
 - Diffuse emission arising from cosmic-ray interactions
- Searching for the source of galactic cosmic rays
 - Cosmic-ray intensity linked to massive star formation
- Ongoing Fermi LAT all-sky survey will look for additional starbursts and other star-forming galaxies
 - Normal star-forming galaxies are much more common than active galaxies but most often are fainter and unresolved