Observations of the isotropic diffuse gamma-ray emission with the Fermi Large Area Telescope

Markus Ackermann

SLAC National Accelerator Laboratory on behalf of the Fermi LAT collaboration

Fermi Symposium, Nov. 2009, Washington DC







## Main contributions to the Fermi gamma-ray sky



# The isotropic diffuse gamma-ray emission



 Isotropic diffuse flux contribution from unresolved sources depends on LAT point source sensitivity

→ Contribution expected to decrease with LAT observation time

Potential contributions to the isotropic diffuse continuum gamma-ray emission in the LAT energy range (100 MeV-300 GeV):

#### unresolved point sources

- Active galactic nuclei (see talk by M. Ajello)
- Star-forming galaxies
- Gamma-ray bursts

#### □ diffuse emission processes

- UHE cosmic-ray interactions with the Extragalactic Background Light
- Structure formation
- large Galactic electron halo
- WIMP annihilation

## Cosmic-ray background

- Primary cosmic-rays
  + secondary CR
  produced in earth
  atmosphere
- Charged and neutral cosmic-rays outnumber celestial gamma-rays by many orders of magnitude
- CR contamination strongly suppressed by Anti-coincidence detector (ACD) veto and multivariate analysis of event properties



Residual CR produce unstructured, quasi-isotropic background (after sufficient observation time)

Fermi Symposium, 11/02/09-11/05/09

## Data selection for the analysis of the isotropic flux



|     | LAT star  | ndard even | t classes:  |      |
|-----|-----------|------------|-------------|------|
| Eve | ent class | Backgroun  | d contamina | tion |

| transient | <~ 100 x EGRET | EGB flux |
|-----------|----------------|----------|
| source    | <~ 20 x EGRET  | EGB flux |
| diffuse   | <~ 1 x FGRFT   | FGB flux |

- 3 event classes defined in standard LAT event selection
- LAT isotropic flux expected to be below EGRET level (factor »10 improvement in point source sensitivity)

LAT on-orbit background higher than predicted from pre-launch model

More stringent background rejection developed for this analysis

□ Event parameters used:

- Shower shape in Calorimeter
- Charge deposit in Silicon tracker
- Gamma-ray probability from classification
  analysis
- Distance of particle track from LAT corners

Fermi Symposium, 11/02/09-11/05/09

## Performance of the dedicated event selection

Improved residual background suppression compared to diffuse class

Improved agreement between simulation and data from rejection of hadronic shower and heavy ions Uncertainty: +50%/-30%

Retained effective area for γ-rays



# Analysis technique



## □ **Pixel-by-pixel max. likelihood fit** of |b|>10° sky

- equal-area pixels with ~ 0.8 deg<sup>2</sup> (HEALPIX grid)
- sky-model compared to LAT data
- point source /diffuse intensities fitted simultaneously
- 9 independent energy bins, 200 MeV 100 GeV
- 10 month of LAT data, 19 Ms observation time

## □ Sky model:

- Maps of Galactic foreground γ-rays considering individually contributions from IC and local HI
- Individual spectra of TS>200 (~>14σ) point sources from LAT catalog
- Map of weak sources from LAT catalog
- Solar IC and Disk emission
- Spectrum of isotropic component

 Subtraction of residual background (derived from Monte Carlo simulation) from isotropic component

## Model of the Galactic foreground

### γ-ray emission model

#### γ-ray emission model

HI (7.5 kpc < r < 9.5 kpc)

Inverse Compton scattering

- Diffuse gamma-ray emission of Galaxy modeled using GALPROP
- Spectra of dominant high-latitude components fit to LAT data:
  - Inverse Compton emission (isotropic ISRF approximation)
  - Bremsstrahlung and  $\pi^0$ -decay from CR interactions with local (7.5kpc < r < 9.5kpc) atomic hydrogen (HI)
- HI column density estimated from 21-cm observations and E(B-V) magnitudes of reddening
- □ 4 kpc electron halo size for Inverse Compton component (2kpc 10kpc tested)

## The LAT isotropic diffuse flux (200 MeV – 100 GeV)



error bars / bands: statistical error + LAT effective area uncertainty + residual background contamination uncertainty

- Spectrum can be fitted by power law:
   γ = 2.41 +/- 0.05
- Flux above 100 MeV:  $F_{100} = 1.03 + - 0.17$   $\times 10^{-5} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ (extrapolated)
- Foreground modeling uncertainty not included in error bands

## Systematic uncertainties from foreground modeling

- $\Box$  RMS of residual map (averaged over 13.4 deg<sup>2</sup> bins) is 8.2%,
  - 3.3 % expected from statistics
- Residuals show some correlation to structures seen in the galactic foreground emission
  - $\rightarrow$  Foreground model is not perfect.
- □ Impact of foreground model variations on derived EGB intensity studied:

| Flux in band         | 200 MeV – 400 MeV                                                    | 1.6 GeV - 3.2 GeV                                                    | 51 GeV – 102 GeV                                                      |
|----------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|
| Extragalactic        | 2.4 +/- 0.6                                                          | 12.7 +/- 2.1                                                         | 11.1 +/- 2.9                                                          |
| HI column density    | +0.1 / -0.3                                                          | +0.1 / -3.6                                                          | +0.1 / -1.1                                                           |
| Halo size + IC       | +0.1 / -0.3                                                          | +0.1 / -1.8                                                          | +2.9 / -0.5                                                           |
| CR propagation model | +0.1 / -0.3                                                          | +0.1 / -0.8                                                          | +3.0 / -0.1                                                           |
| Subregions of  b >10 | +0.2 / -0.3                                                          | +1.9 / -2.1                                                          | +2.7 / -0.9                                                           |
|                      | x 10 <sup>-6</sup> cm <sup>-2</sup> s <sup>-1</sup> sr <sup>-1</sup> | x 10 <sup>-8</sup> cm <sup>-2</sup> s <sup>-1</sup> sr <sup>-1</sup> | x 10 <sup>-10</sup> cm <sup>-2</sup> s <sup>-1</sup> sr <sup>-1</sup> |

Table items are NOT independent and cannot be added to provide overall modeling uncertainty

## Comparison with EGRET results



 Considerably steeper than the EGRET spectrum by Sreekumar et al.

 No spectral features around a few GeV seen in re-analysis by Strong et al.

| Fermi Symposium, 11/02/09-11/05/09             | Markus Ackermann for the LAT collaboration                           |                | 11 |
|------------------------------------------------|----------------------------------------------------------------------|----------------|----|
|                                                |                                                                      |                |    |
|                                                | x 10 <sup>-5</sup> cm <sup>-2</sup> s <sup>-1</sup> sr <sup>-1</sup> |                |    |
| LAT + resolved sources below EGRET sensitivity | 1.19 +/- 0.18                                                        | 2.37 +/- 0.05  |    |
| EGRET (Strong et al. 2004)                     | 1.11 +/- 0.10                                                        |                |    |
| EGRET (Sreekumar et al., 1998)                 | 1.45 +/- 0.05                                                        | 2.13 +/- 0.03  |    |
| LAT (this analysis)                            | 1.03 +/- 0.17                                                        | 2.41 +/- 0.05  |    |
|                                                | Flux, E>100 MeV                                                      | spectral index |    |
|                                                | 571 1                                                                |                |    |

#### Summary

- A new low-background data selection was developed to obtain a measurement of the EGB. This data selection will be made public with the next update of the Fermi event classification.
- □ The EGB found by the LAT is compatible with a simple power law of index 2.41+/-0.05 between 200 MeV and 100 GeV.
- □ It is softer than the EGRET spectrum and does not show distinctive peaks (compared at EGRET sensitivity level).
- $\Box$  ~ 15% of the EGRET EGB is resolved into sources by the LAT.
- □ From Blazar population study: ~20%-30% of LAT EGB is due to unresolved Blazars (see M. Ajello's talk).
- Ongoing work to extend the energy range and reduce systematic uncertainties of this measurement.



## Cosmic Ray background in data and simulation

- □ Sample A: events classified as  $\gamma$ -rays by on-board filters, |b|>45 deg
- Sample B: events accepted in medium purity ("source"), but rejected in high purity ("diffuse") standard event class, |b|>45 deg

**Both samples are strongly dominated by CR background !** Sample A  $\rightarrow$  bulk of the CR background Sample B  $\rightarrow$  extreme tails of CR distribution which mimic  $\gamma$ -rays



# Data selection for the analysis of the isotropic diffuse background



**Example for improved background rejection: Transverse shower size in Calorimeter** 

- clean dataset (observations with high γ-ray flux, low CR flux)
- contaminated dataset (observations with low γ-ray flux, high CR flux)
- predicted distribution from LAT simulation

### The Fermi Large Area Telescope

- □ Energy range: 100 MeV 300 GeV
- Peak effective area: > 8000 cm<sup>2</sup> (standard event selection)
- □ Field of view: 2.4 sr
- Point source sensitivity (>100 MeV): 3x10<sup>-9</sup> cm<sup>-2</sup> s<sup>-1</sup>
- □ No consumables onboard LAT → Steady response over time expected



 Standard operation in 'sky survey' mode allows almost flat exposure of the sky

