

VERITAS Discovery of VHE Gamma Rays from the Starburst Galaxy M82

Niklas Karlsson for the VERITAS collaboration Astronomy Dep., Adler Planetarium (Chicago)

The 2009 Fermi Symposium - Washington, D.C. - 2-5 Nov 2009

Niklas Karlsson - The 2009 Fermi Symposium (4 Nov 2009)

Currently the most sensitive array 30% improvement in integral flux sensitivity above 300 GeV

See Perkins et al. poster "VERITAS Telescope 1 Relocation"

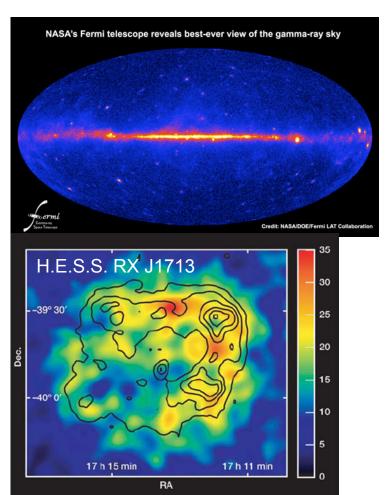
- Mt. Hopkins, AZ
 - 1268 m a.s.l.
- Four 12m telescopes
 - f/D~1.0
- 350 mirrors; ~110m²
- 499 pixel cameras
 - 3.5° FOV
- 3-level trigger system
 - ~250 Hz rate

Energy threshold ~150 GeV

- Sensitivity 1% Crab (5 σ) in < 50h
- Angular resolution <0.1 $^{\circ}$ (r_{68%})
- Energy resolution ~15%

VERITAS

Very Energetic Radiation Imaging Telescope Array System

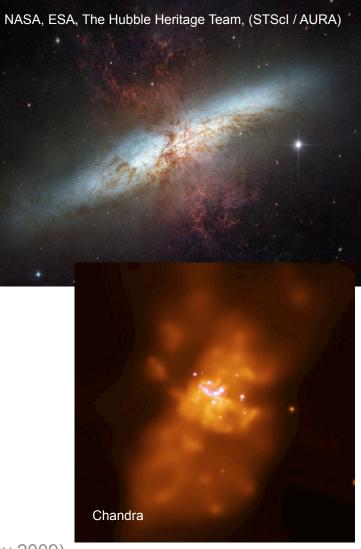


Origin of Cosmic Rays

- Existence well established near Earth
 - First evidence in 1912 (Hess)
 - But the origin has eluded us for 100+ years!
- Diffuse γ-rays from the Milky Way
 - Interpreted as mainly coming from CRs interacting with interstellar gas
 - CRs + ISM $\rightarrow \pi^0 \rightarrow \gamma$ -rays
 - electrons + ambient photons $\rightarrow \gamma$ -rays
- Where are these CRs accelerated?
 - Supernova remnants
 - Massive star winds
- Can we look elsewhere for more evidence?
 - LMC nearby, observed with EGRET and Fermi-LAT
 - Other galaxies

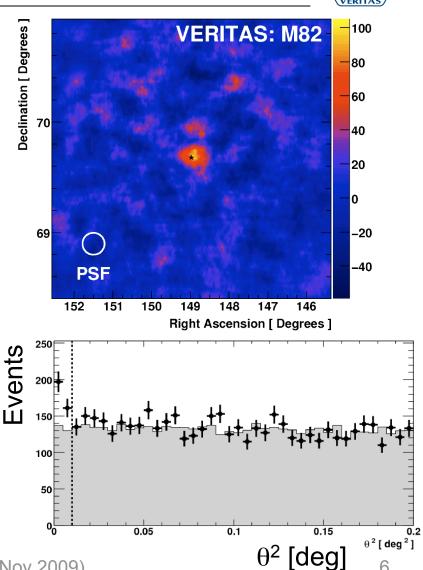
Why Starburst Galaxies?

- Starbursts activity induced by galaxy interactions/mergers
 - Strong tidal forces
 - Active star-forming regions
- Leads to high gas densities & star formation rates
 - High supernova rate
 - Shocks from massive star winds and supernovas
- Enhanced cosmic-ray flux \Rightarrow enhanced gamma-ray flux
- Requirements for good candidates
 - Distance nearby
 - High CR density
 - Measure via synchrotron emission in radio frequencies
 - High mean gas densities
 - Form far infrared (FIR) emission
- Modeling
 - M82 (Persic et al. 2008)
 - NGC 253 (Domingo-Santamaria et al. 2005)



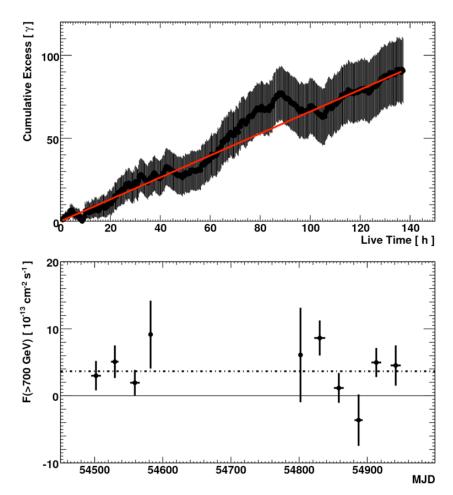
M82 - prototypical starburst

- Among the closest starbursts
- Core starburst region
 - SF rate ~10x Milky Way
 - SN rate ~0.1/yr
 - CR density ~100x Milky Way
 - Inferred from synchrotron emission
 - Gas density ~150 cm⁻³
- Weak upper limits from previous generation observatories
 - EGRET (HE)
 - HEGRA & Whipple (VHE)
 - flux <10% Crab

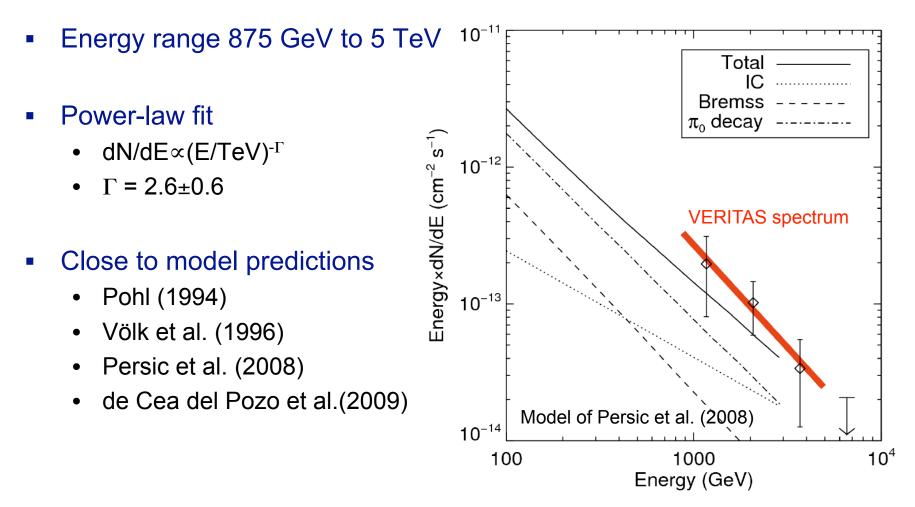


VERITAS Discovery

- M82 observed 2007-2009
 - Quality selection (weather etc.)
 - ~137 h live time (deepest VERITAS exposure to date)
- Standard VERITAS analysis
 - Std. practice to use 3 sets of cuts
 - Theoretical prediction of a hard spectrum
 - Expect a hard cut to be the best
 - Cuts a priori optimized using Crab data at $\theta \approx 40^{\circ}$
 - $E_{th} \approx 700 \text{ GeV}$ (lower sensitivity at $\theta \approx 40^{\circ}$)
- Point-like excess of 91 $\gamma \Rightarrow 5.0\sigma$
 - 4.8 post-trials significance •
- The results are now published in Nature online.



6


M82: Steady VHE γ-ray Source

- One of the weakest VHE γ-ray sources ever detected
 - 0.9% of the Crab Nebula (E>700 GeV)
 - 0.6 γ/hour
- Cumulative excess consistent with a steady flux
- Lightcurve is consistent with no monthly variation
 - χ^2 =11.5 with 9 d.o.f.
 - P(χ²)=0.24

VHE γ -ray Spectrum of M82

Interpretation

Hadronic channel

- CR ions + matter $\rightarrow \pi$
- $\pi \rightarrow \gamma$ and sec. electrons
- Secondary electron emit synchrotron radiation
 - Radio frequency 32 GHz
 - Constrain γ -ray flux from CRs at 20 GeV
- Extrapolated VERITAS spectrum gives ~2x too high flux
 - Γ = 2.3 ok though
- Spectrum is harder at Fermi-LAT energies OR VHE flux not predominantly from CR ions

Leptonic channel

- Inverse Compton scattering
 - CR electrons + photons → X-rays and γ rays
- Use non-thermal X-ray emission to constrain the electron population
 - Lower limit on magnetic field (8 nT)
 - Upper limit on absolute number of electrons at about 1 GeV
 - But 10 TeV electrons required for VHE gamma rays
- Theory predicts Γ = 2.0 in the 100 keV to 100 GeV energy band
 - Steepening of IC spectrum and a cut off at some energy due to cooling

Summary

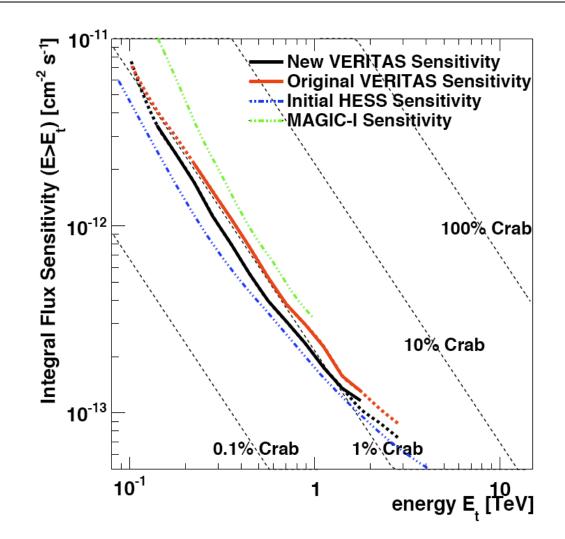
- VERITAS has discovered VHE γ-ray emission from M82
 - 91 γ 's in 137 h of quality-selected live time
 - Post-trial significance is 4.8σ
 - Steady flux F(E>700 GeV)=(3.7±0.8_{stat}±0.7_{syst}) ×10⁻¹³ cm⁻²s⁻¹
 - Luminosity is $\sim 2 \times 10^{32}$ W; approx. 0.03% of the optical luminosity
- Weakest VERITAS source to date
- First clear detection of VHE gamma rays from an extragalactic object of non-AGN type
- Hard spectrum source
 - $\Gamma = 2.6 \pm 0.6$

Systematics Checks

- All hardware operating normally, no moonlight data & dark NSB region
- "Hard cuts": Enormous images (>200 PE); bright star effects mitigated; very low background (S/N ~ 1/3)
- Result verified (5.2σ) by independent analysis/calibration/simulation package(s)
- Alternate background estimation: Ring method => 5.1σ on-source
 - Also ~5σ using a binned maximum-likelihood method
 - Reflected-region BG method always has 11 off-source regions
 - Significance distribution is Gaussian (mean 0, σ = 1)
- No bias in long data set: Stack extragalactic non-blazar data
 - With the same analysis: Combined excess of -4 events (-0.2σ) in ~121 h of live-time (no moonlight data)
- Not due to brightness of M 82 (V=9.3) when integrated over its extent => V ~ 8.2
 - Two V < 9 stars in FOV: Excesses of $1.1\sigma \& 0.8\sigma$ at their locations (>0.7° from M 82)
- Not due to dodgy behavior in a telescope: Signal still present when each telescope is individually excluded

Backup slides

VERITAS After the move



ADLER Niklas Karlsson - The 2009 Fermi Symposium (4 Nov 2009)

Improved Sensitivity

DLER Niklas Karlsson - The 2009 Fermi Symposium (4 Nov 2009)