Gamma-Ray Light Curves in Offset Polar Cap Geometry

Alice K. Harding¹, Megan E. DeCesar^{1,2}, M. Coleman Miller², Konstantinos Kalapatharakos^{1,3}, Ioannis Contopoulos³

¹NASA Goddard, ²University of Maryland, ³Academy of Athens

Polar caps in retarded magnetic fields

 α = 30°

α = 60°

α = 90°

Slot gap accelerator

Two main effects from offset PCs:

- Asymmetric E_{II}
- geometry of open field lines

Problem: we don't know the correct E_{||} until we understand pulsar magnetospheres with dissipation (see poster by Kalapotharakos et al.)
For now, assume

vacuum dipole to estimate $E_{\parallel} \rightarrow$ emission geometry

• Embed emission geometry in global magnetic field

(see also talk by Venter et al., and posters by Decesar et al., Johnson et al.)

Simple model of offset polar cap

• Effective offset is a fraction of polar cap radius

 $\Delta r(\varepsilon) \approx R \theta_{PC} [1 - \theta_{PC}^{\varepsilon}] \approx R \theta_{PC} [1 - \varepsilon \theta_{PC}] \quad \text{Small fraction of NS radius}$

Accelerating electric field in slot gap

- Offset introduces large asymmetry in particle acceleration across PC $\varepsilon \cos \phi > 0$ Smaller PC angle, reduced E₁₁ $\varepsilon \cos \phi < 0$ Larger PC angle, increased E₁₁ • Offset is not a free parameter in
- magnetosphere models with retardation

Slot gap light curves for vacuum dipole geometry

Slot gap light curves for force-free geometry

Slot gap light curves: vacuum vs. force-free

Gamma-ray/radio phase lag

Gamma-ray Space Telescope

Vacuum dipole model fits: Vela

preliminary

30 month survey data 4000 counts/bin

Markov Chain Monte Carlo method used to find maximum likelihood in $\alpha, \zeta, w, r_{max}$

Force-free model fits: Vela

preliminary

Conclusions

- Vacuum slot gap LCs from asymmetric polar caps provide better fits to Vela – lower off-peak emission and agreement with ζ from X-ray torus
- Force-free model LCs fits comparable χ^2 to asymmetric vacuum dipole but
 - phase lag from magnetic pole too large (see also poster by DeCesar et al.)
 - $\alpha \zeta \sim 37^{\circ}$ too large for radio-loud pulsar
- Radio phase lag will be an important diagnostic in finding "real" pulsar magnetosphere geometry (see poster by Kalapotharakos et al.)