

Modeling Light Curves of the Phase-Aligned γ-ray Millisecond Pulsar Subclass

C. Venter¹, T.J. Johnson^{2,3}, & A.K. Harding²

¹Centre for Space Research, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa

²Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

³Department of Physics, University of Maryland, College Park, MD 20742, USA

Fermi Symposium, 9 – 12 May, Rome, Italy

Searches of Fermi LAT Unidentified Sources

Searches of Fermi LAT Unidentified Sources

(see talk & poster by R. Romani, & O. Celik)

Three MSP Subclasses

Gamma-ray Space Telescope

I. Radio LC preceding γ-ray LC

Venter et al. (2009)

 γ -ray emission from thin accelerating gaps + conal radio beam

Three MSP Subclasses

II. Radio lagging γ-ray LC

Venter et al. (2009)

II. Radio lagging γ-ray LC

Muslimov & Harding (2004); Venter et al. (2009)

III. Radio and γ-ray LCs in phase

Caustic γ -ray and radio emission from altitude-limited acceleration gaps

PC

IIIb. Low-altitude Slot Gap

III. Radio and γ-ray LCs in phase

Venter et al. (2011)

Venter et al. (2011); Johnson et al. (2011); see poster by Johnson et al.

Polarization Properties:

Samma-ray

Caustic Radio Emission

- RVM not really valid for MSPs
- Rapid PA swings

•"Mixing": accumulation of radiation from different positions in magnetosphere - depolarization

•Potential discriminator for caustic vs. non-caustic emission

•Polarization properties of J0034-0534 (0% linear, small circular), J1939+2134 (rapid PA changes / mode switching), & J1959+2048 (0% linear, 4% circular) fit with the caustic hypothesis.

- Pulse shape & lags: LCs fit by different classes of models
 - **1. Standard OG / TPC: radio proceeds γ-ray LC**
 - **2. PSPC: radio has small lag w.r.t. γ-ray profile**
 - 3a. Altitude-limited OG / TPC: Phase-aligned LCs; Co-located, extended, high-altitude emission
 - **3b. Low-altitude SG:** Phase-aligned LCs; Co-located, near PCs.
- aIOG / TPC preferred over IaSG: wide, extended, caustic radio beams
- More free parameters: more pulse shapes available; limits on extent of emission regions
- Polarization measurements may be a possible discriminator for caustic emission

- Radiation models: spectra; pair creation in MSP magnetospheres
- MSP population studies

THANKS!

"My hands have made both heaven and earth; they and everything in them are mine. I, the LORD, have spoken! I will bless those who have humble and contrite hearts, who tremble at My word" (Is. 66:2 NLT).