

Bright High-Energy GRBs detected with the **Gamma-ray Burst Monitor on Fermi**

Andreas von Kienlin (→ Elisabetta Bissaldi) E. Bissaldi et al. 2011, ApJ accepted arXiv: 1101.3325

on behalf of the Fermi GBM Collaboration

GBM Collaborators:

Collaborators at MPE: J. Greiner, D. Gruber, S. Foley, A. Rau, R. Diehl

P. N. Bhat, M. S. Briggs, J. M. Burgess, V. Chaplin, V. Connaughton, G. J. Fishman, G. Fitzpatrick,

L. Gibby, M. Giles, A. Goldstein, S. Guiriec, A. J. van der Horst, A. S. Hoover, R. M. Kippen,

C. Kouveliotou, S. McBreen, S. McGlynn, C. A. Meegan, W. S. Paciesas, V. Pelassa, R. D. Preece,

D. Tierney, C. A. Wilson-Hodge

I. BGO bright bursts → Sample selection

II. Predictability of LAT-detected events

III. High-energy temporal analysis

IV. High-energy spectral analysis and comparisons

201

The GBM-BGO detectors

The GBM-BGO detectors

BGO bright bursts selection criteria (1)

- Selection from the set of <u>253 GRBs</u> collected during the <u>first year</u> of GBM operation
- 1. First (coarser+automated!) selection
 - Bursts with more than 80 counts/s over background in at least one BGO detector over its full energy range (250 keV-40 MeV)
- 2. Second (refined!) burst selection
 - Bursts with signal above 3 σ in the BGO CTIME light curves
 - [CTIME data have a <u>64 ms temporal resolution</u> during burst-mode and spectral resolution of <u>8 energy channels</u>]

BGO	Energy		
Ch. #	Start (keV)	Stop (keV)	
0	113.25	451.60	150-500 keV
1	451.60	973.33	0.5-1 MeV
2	973.33	2119.65	1-2 MeV
3	2119.65	4591.62	2-5 MeV
4	4591.62	9757.00	5-10 MeV
5	9757.00	21463.0	10-20 MeV
6	21463.0	37989.0	20-40 MeV
7	37989.0	50000.0	Overflow

Example of BGO CTIME energy channel boundaries for GRB 090227B

BGO bright bursts selection criteria (3)

- Further subdivision according to the detection significance in different energy channels
 - 52 GRBs in Ch.1 (~0.5 1 MeV)
 - 19 GRBs in Ch.2 (~1 2 MeV)
 - 10 GRBs in Ch.3 (~2 5 MeV)
 - 6 GRBs in Ch.4 (~5 10 MeV)
- GRB 081215A: Example light curve
 - Top panel: 8–200 keV band (NaI detector)
 - Other four panels: BGO light curves in different energy ranges
 - Marginally detected by the LAT (86° to the boresight)
 - No directional nor energy info

Abdo et al ApJ,707,5 (2009)

Science,32 (2009)

ApJ,712,5 (2010)

McEnery e GCN 8684 (2008)

Andreas von Kienl

BGO bright bursts selection criteria (2)

- Total number of GRBs included in this analysis: 52
 - ~20% of all bursts detected during the first year of GBM operation
 - All LAT detected burst (in the first year!) are in the sample

	TABLE 1 Basic properties of 52 bright GRBs										
	GBM	GBM GRB Trig. Time NaI BGO LAT Angle Data Tiu				Time I	Time Interval ^a				
	Trig. #	Name	(T_0, MET)	Det.	Det.	(deg)	Type	Start	Stop		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)		
	080723.557	$080723\mathrm{B}$	238512142	4	0	107	CSPEC	0.004	60.161		
	080723.985	_	238549063	5,2	0	113	CSPEC	-2.304	50.945		
	080725.541		238683564	6,7	1	50	TTE	-0.064	0.384		
	080802.386	080802	239361311	4,5	0	125	CCDEC	-0.064	0.448		
	080807.993	080807	239845833	0,1,2	0	74	CSPEC	-1.376	21.152		
00	080816.989	080816B	240623035	b, (1	10	CEDEC	-0.064	4.480		
80	080817.101	080817A	240037931	2,5	0	80	CSPEC	0.004	00.417		
	080825.593	0808250	241300429	$^{9,a}_{6,7}$	1	00	USPEC	0.004	25.210		
	080905.499	080905A	242308730	0,12	1	20	CSDEC	-0.064	1.024 2.719		
	080900.212	080906B	242370312	2.4	0	52	CSPEC	0.004	3.712		
23,1688	080025 775	080025	245210700	$^{5,4}_{6,7}$	1	38	CSPEC	0.004	25.856		
	081006 604	080925	244000330	0,7	0	16	TTE	0.384	23.830		
	081000.004	001000	244990113	8 h	1	96	CSPEC	-0.384	40 321		
	081009.090	081012B	245262010	0,5	1	66	TTE	-0.128	0.768		
58	081024 801	081024B	246576161	6.0	1	16	TTE	-0.128	0.128		
	081101 532	081101B	240310101	5.2	Ō	116	CSPEC	0.003	8 704		
	081110 601	081110	248019944	7.8	1	67	TTE	-0.192	12,096		
	081121.858	081121	248992528	a.b	1	140	CSPEC	0.003	21.504		
	081122 520	081122	249049693	0,1	õ	21 (ABB)	CSPEC	0.002	25 600		
	081125.496	081125	249306820	a, b	1	126	CSPEC	0.003	10.368		
	081126.899	081126	249428050	0.1	Ô	18	CSPEC	-12.160	40.065		
	081129.161	081129	249623525	a.b	1	118	CSPEC	-2.944	28.800		
et al.	081207.680	081207	250359527	9.a	ĩ	56	CSPEC	0.003	100.354		
	081209.981	081209	250558317	8.b	ĩ	107	TTE	-0.056	0.256		
	081215.784	081215A	251059717	9.a	ĩ	89	CSPEC	0.004	7.424		
	081216.531	081216	251124240	8.b	1	99	TTE	-0.128	0.960		
	081224.887	081224	251846276	6,9	1	17 (AAR)	CSPEC	0.002	16.544		
in		Fermi Sy	/mposium • Ro	ome • M	ay 10 th ,	2011					

BGO bright bursts → Sample selection Ι. **II.** Predictability of LAT-detected events **III.** High-energy temporal analysis **IV.** High-energy spectral analysis and comparisons Andreas von Kien

201

LAT predictability

BGO peak count rate measured in channel 1 (~500 keV - ~1 MeV) Bissaldi et al. (2011)

- 15 GRBs inside the LAT FoV
- 11 GRBs at the edge of the LAT FoV
- Green circles, orange stars and red squares represent firm, marginal or missing LAT detections
- Blue dotted line marks a "detection limit" which was arbitrarily placed at 30 and 100 counts per second in the measured peak count rate.
- This analysis enables selection of good candidates for potential LAT detections
 - Information added to the GBM Ground Location GCN notices (GCN/FERMI_GBM_GND_POSITION)
 - alerts observers that a bright, hard burst has occurred in the LAT field-of-view.

Duration distributions

- 17 short, 35 long bursts in the sample \bullet
- Duration bimodality in the 50-300 keV distribution is clear •
- T90 (50–300 keV): Short bursts: ~1.2 s, Long bursts: ~33 s •
- T90 (300 keV-10 MeV): Short bursts: ~1.0, Long bursts: ~25 s \bullet
 - Narrower distribution
 - Bursts at higher energies tend to be shorter

Evolution of duration with energy

BGO bright bursts → Sample selectioni Ι., **II.** Predictability of LAT-detected events **III.** High-energy temporal analysis IV. High-energy spectral analysis and comparisons ndreas von Kien 201

Comp results

Sermi

GBM vs. BATSE comparison

- Comparison with BATSE bright bursts results (Kaneko et al. 2006)
- Increasing the space of study towards short and hard bursts with higher Epeak values (by selection!)
 - 30% of the sample are short bursts, unlike the Kaneko sample (only 4%!)
 - See Guiriec et al., Ghirlanda et al., Nava et al. (2010)

- GBM is an excellent tool to study in detail bright shorter and harder GRBs as well as longer ones (1st year bright BGO sample: 52 GRBs)
- We can use the GBM data to predict LAT detections
 - Peak count rate measured between 500 keV and 1 MeV with the mostly illuminated BGO detector
- We have extended the duration vs energy relationship up to ~10 MeV; we confirm the earlier trend of T90 ~ E^-0.4
- Most Integrated spectra of bright short GRBs are best fit with a comptonized model. We find that the ones associated with an extra component are best fit with a Band function

. 2011

• The hardness selected sample of GBM differs from the BATSE bright burst sample

I. Predictability of LAT-detected events

II. High-energy temporal analysis

III. High-energy spectral analysis and comparisons

0th, 201

I. Predictability of LAT-detected events

II. High-energy temporal analysis

III. High-energy spectral analysis and comparisons

. 201

Evolution of duration with energy

- Followed the approach described by Richardson et al. (1996)
 - BATSE 3B, 72 bursts, 25-50 keV, 50-100 keV, 100-300 keV, and >300 keV.
- Utilized broader BGO energy coverage: adding five energy channels, namely 300-500 keV, 500 keV-1 MeV, 1-2 MeV, 2-5 MeV, and 5-10 MeV
- Power law fit (T90 = AE^a)
 - Central energy value used to represent each energy channel in the fit
- Results for long and short bursts computed separately
- Fit performed for the <u>mean T90 values</u> computed from subsets of bursts detected in 3–6 energy channels

Dermi