Do Fermi-LAT observations really imply very large Lorentz factors ?

Modeling the $\gamma\gamma$ annihilation in GRBs

R. Hascoet with F. Daigne & R. Mochkovitch

Recent GeV detections by Fermi-LAT

Stricter Lorentz factor constraints

- GRB 080916C : $\Gamma_{min} \ge 887$ (Abdo et al. 2009)
- GRB 090510 : $\Gamma_{min} \ge 1200$ (Ackerman et al. 2010) (E_{max} = 30.1 GeV)
 - severe constraints on the central engine physics (baryon load should be strongly limited)
 - small deceleration radius R_{dec} for a dense external medium (long GRBs), which limits the radius range for the prompt internal mechanism

Recent GeV detections by Fermi-LAT

(Abdo et al. 2009)

Opacity computation

calculation of the γγ opacity which takes into account the *time, space and direction dependent* photon field existing in an outflow with *several* relativistically moving emitting regions (internal shock framework)

Minimum Lorentz factor

Example of GRB 080916C

Observational constraints

- redshift (z = 4.35)
- γ -ray energy (E_{γ iso} = 8.8 10⁵⁴ erg)
- temporal characteristics (duration & variability timescale)
- spectral properties: α , β , $\mathsf{E}_{\mathsf{peak}}$
- We focus on the most constraining time bin (time bin b)
- Highest photon energy: E = 3 GeV

(Abdo et al. 2009)

Minimum Lorentz factor

Example of GRB 080916C

Minimum Lorentz factor

Example of GRB 080916C

Our detailed model predicts minimum Lorentz factors lower by a factor 2-3 (in agreement with the single-pulse semi-analytical model by **Granot et al. 2008**)

delayed GeV onset = $\tau_{\gamma\gamma}$ temporal evolution ?

delayed GeV onset = $\tau_{\gamma\gamma}$ temporal evolution ?

Example of GRB 080916C

delayed GeV onset = $\tau_{\gamma\gamma}$ temporal evolution ?

Example of GRB 080916C

Initial Lorentz factor profile

smoothing the GeV light curves with $\tau_{_{\!\gamma\gamma}}$

Zou, Fan & Piran (2011)

- The MeV component is produced at a typical radius R_{MeV} ($\Delta t_{obs,MeV} > R_{MeV}/2\Gamma_{MeV}^2c$)
- If GeV photons are produced at a larger radii R_{GeV} ($\Delta t_{obs,GeV} > R_{GeV}/2\Gamma_{GeV}^2c$):
 - the interacting MeV photon field will have a smaller density
 - the collision angles between MeV and GeV photons will be smaller than 1/ $\Gamma_{\rm MeV}$

 $\tau_{_{\gamma\gamma}}$ is smaller and the constraint on $\Gamma_{_{\text{min}}}$ is loosened

How to produce MeV and GeV photons in 2 distinct zones

External forward shock emission (Kumar & Barniol Duran 2010, Ghisellini et al. 2010)

- MeV emission produced by internal mechanisms
- The whole GeV emission is made by the external forward shock

Internal leptonic model (e.g. Bošnjak, Daigne & Dubus 2009)

Within the internal shock framework

- Band component: synchrotron
- Extra component at HE (not dominant): IC (in Klein-Nishina) rising with a delay

Internal hadronic model (e.g. Asano, Guiriec & Mészáros 2009)

Within the internal shock framework

- Band component: leptonic origin
- Extra component at HE (not dominant): proton synchrotron or IC off pairs (produced by photon-hadronic interactions). The acceleration time implies a delay.

Zou, Fan & Piran (2011)

- The MeV component is produced at a typical radius R_{MeV} ($\Delta t_{obs,MeV} > R_{MeV}/2\Gamma_{MeV}^2c$)
- If GeV photons are produced at a larger radii R_{GeV} ($\Delta t_{obs,GeV} > R_{GeV}/2\Gamma_{GeV}^2c$):
 - the interacting MeV photon field will have a smaller density
 - the collision angles between MeV and GeV photons will be smaller than 1/ $\Gamma_{\rm MeV}$

 $\tau_{_{\gamma\gamma}}$ is smaller and the constraint on $\Gamma_{_{\text{min}}}$ is loosened

GeV)

 \mathfrak{O}

 \bigcirc

log(

Example of GRB 080916C

GeV)

 \mathfrak{O}

 \bigcirc

log(

Example of GRB 080916C

GeV)

 \mathfrak{O}

 \bigcirc

log(

Example of GRB 080916C

GeV)

 \mathfrak{O}

 \bigcirc

log(

Example of GRB 080916C

Conclusions

Do Fermi-LAT observations really imply very large Lorentz factors ?

Conclusions

Minimum Lorentz factor in GRB outflows

If MeV and GeV photons are produced at the same place

- detailed modeling vs. simple modeling: $\Gamma_{\rm min}$ lower by a factor 2-3
 - less severe constraint on the central engine physics
 - prompt internal mechanism radius less constrained (larger deceleration radius)

If MeV and GeV photons are produced in 2 distinct regions

• can further weaken the constraint on Γ_{\min} (another factor 2-8) (Except for the FS model for the GeV emission: a large Lorentz factor is needed for an early deceleration, Kumar & Barniol Duran 2010, Ghisellini et al. 2010)

New approximate formula

more precise, more general

Estimation of R_{MeV} : $R_{MeV} \approx \Gamma^2 c \Delta t_{var} / (1+z)$

Conclusions

Minimum Lorentz factor in GRB outflows

New approximate formula

$$\Gamma_{\min} \approx \frac{1}{3} \cdot \left\{ \left[\sigma_T \left(\frac{d_L(z)}{c\Delta t_{\text{var}}} \right)^2 E_c f(E_c) F(\beta) \right]^{\frac{1}{2(1-\beta)}} (1+z)^{-\frac{\beta+1}{1-\beta}} \left(\frac{E_{GeV} E_c}{m_e^2 c^4} \right)^{\frac{\beta+1}{2(\beta-1)}} \right\} \times \left[\frac{1}{2} \left(1 + \frac{R_{GeV}}{R_{MeV}} \right) \frac{R_{GeV}}{R_{MeV}} \right]^{-1/2}$$

Other results (Within the internal shock framework)

- $\gamma\gamma$ cutoff in a time-integrated spectrum: softening of the HE slope β instead of an exponential shape
 - → could make the gamma-gamma cutoff characterization more difficult
- the $\tau_{_{\gamma\gamma}}$ temporal evolution can produce a delayed onset for the GeV emission
 - \rightarrow t_{delay} can be significantly larger than t_{var}
- $\tau_{_{\gamma\gamma}}$ can smooth the shortest time-scales of HE light-curves
 - temporal variability analysis to discriminate between an internal or external origin could be biased ?