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Multi-wavelength Low-state SED:
Fermi-LAT Blazar PKS 2155-304
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HBLs vs. FSRQs; breaks in LAT-band complicate things — e.g. 3C 454.3




The Monte Carlo simulations use a kinetic description of
convection and diffusion in MHD shocks;

Thermal ions and e are injected far upstream of shock;

Particle diffusion in MHD turbulence 1s phenomenologically
described via the mean free path A being proportional to some
power of its gyroradius r;
Principal advantages include addressing large momentum
ranges => excellent for astrophysical problems.

Simulations are fully relativistic, and not restricted to
subluminal shocks, and include shock drift acceleration;

Technique is well-tested in heliospheric contexts with spacecraft
data Earth’s bow shock (Ellison et al. 1990) and interplanetary
shocks (Baring et al. 1997; Summerlin & Baring 2006).

Magnetic turbulence can be incorporated (Ostrowski et al.),
though plasma effects cannot be fully modeled.



Monte Carlo Simulation Particle Trajectories

Diffusive Shock Acceleration
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Gyration in B-fields and diffusive transport modeled by a Monte Carlo
technique; color-coded in Figure according to fluid frame energy.

Shock crossings produce net energy gains (evident in the increase of
gyroradii) according to principle of first-order Fermi mechanism.




Shock Acceleration Injection Efficiencies
Summerlin & Baring (Ap], 2012)
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Left panel: moderately subluminal shocks:
Right panel: marginally subluminal shocks;

While regimes, the
price paid is a dramatic reduction in injection efficiency.




Acceleration Indices: Oblique Shocks

Summerlin & Baring (Ap], 2012)
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Left panel: For blazar synchrotron/IC/SSC emission picture,

Right panel: blazar (and GRB) scenarios require either strong
turbulence, or .




Lepton Distributions for Strong Cooling

Oblique Relativistic Shock
]‘. )7 I'n ) 841 5. 71

AO 0235+164 - Electron Spectrum

Oblsque Relativistic Shock: B L P, D84 r= 371

e Left panel: Electron spectra in a mildly relativistic, oblique shock for
various turbulence levels (n =l/rg);

e Right panel: Distribution tailored for multiwavelength spectral fit to
the blazar AO 0235+164, with y__ ~10* (large 7).



Multiwavelength SSC/EC fits to AO 0235+164

AO 0235+164 Boettcher et al. (2012)

Fermi data paper:
1 Ackermann et al.

(2012: Ap], 751, 159)
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e Diffusive shock acceleration (DSA) with active synchrotron+IC cooling;

e BL Lac object AO 0235+164 is pathological: synchrotron cannot fit X-rays

e Thermal population (present in DSA) rears it head in the X-rays;

e Large 7 (~10%) needed to move synchrotron peak to optical: E__ ~ mc?/(na)



Multiwavelength SSC fits to Mrk 501

Mrk 501
April 2009

Fermi/TeV data:

Acciari et al.
(2011: Ap], 729, 2)
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Diffusive shock acceleration (DSA) with active synchrotron+IC cooling;
Synchrotron cannot fit optical; disk component added.
Large 1 (~10%) needed to move synchrotron peak into X-rays (for HBLS).
Need for large n=/1/rg in blazars identified by Inoue & Takahara (1996).



Wind: Magnetic and Kinetic
Turbulence in quiet Solar

Wind at 1 AU

PSD [(eV/cm®)/Hz)

e Podesta, Roberts & Goldstein (2007,
ApJ 664, 543) 10°  10*  10°  10* 10"
e Wind spacecraft power spectrum for e

(quiet) solar wind turbulence: 81 days,
11/15/00 — 02/01/04 in 3 sec intervals;

e Inertial range above ~3x10- Hz;

e Magnetic <(0B)%/8m> spectrum (blue)
and Kinetic <o(0v)?/2> power (red);

e Doppler resonance condition w=£2/y
may not be satisfied by charges with
large gyroradii;

PSD [(eV/cm®)Hz)

e =>increase of diffusive mean free path

B 107 10° 10 10
parameter n—/l/rg at large momenta. Frequency (Hz)




Template SSC Spectra for Variable n=A/r,
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Cooled SSC spectra for shock acceleration with =7, (p/p,)*!, with a=2, 3.

Here A o p“. Windows where synchrotron peaks and IC peaks emerge depend
substantially on choice of a, i.e. momentum dependence of A.

Spectral index in Fermi-LAT band also depends on choice of « .
=> X-ray/y-ray diagnostics on turbulence power spectra and particle diffusion.



Conclusions

Shock acceleration particle indices depend on several

parameters: field obliquity, the scattering strength or
level of MHD turbulence, amount of diffusion across B;

So, blazar spectra are intimately connected to detailed
shock parameters => Ferm role for gamma-ray spectral
diagnostics for leptonic and hadronic models.

Index parameter space dichotomizes into sublumnal (fat)
and superluminal (steep) regimes.

Cooling models: several LAT-TeV blazars indicate
subluminal acceleration regimes; 3C 279 is exception.

We expect 7=A/r, to be an increasing function of p as
scales sample greater distances from the shock.

M/W spectra: X-ray/y-ray diagnostics on turbulence
power spectra and particle diffusion (coming soon).



Connecting to Blazar Gamma-ray Observations:

e Model coupling between particle acceleration index o for
dn/dp a p© and observed photon index [3 (dn./de, a ev'ﬁ)
depends on whether in situ cooling is efficient or not.

— Index data is acquired by Fermi-LAT, not absorbed TeV band

e Three main possibilities for blazars:
— Uncooled synchrotron or IC/SSC: f=(0+1)/2 => 0=23-1

— Strongly-cooled synchrotron or IC/SSC: f=(0+2)/2 => 0=23-2
— Uncooled hadronic emission: 3~0

e => Great diagnostics potential in Fermi era!

e Several LAT blazars with p=I", <2 may require subluminal
shocks, perhaps with weak turbulence. 3C 279 with its
steep spectrum is an exception, perhaps sampling mildly-
superluminal shocks with strong turbulence.
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Oblique Relativistic MHD Shock Geometry

Particle retention in the shock layer is extremely sensitive to
the magnetic field angle w.r.t. the shock normal in relativistic shocks.

Upstream Upstream

|
|
| |
Downstream
‘ J Downstream
|
|
|

Normal Incidence Frame (NIF) de Hoffmann-Teller frame (HT)



Shock Drift Acceleration in Action: 7\/1‘g=104
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- Left Panel: projection of a selected ion orbit onto
the x-y plane, exhibiting drifting in the shock layer. Right Panel: evolution of
magnitudes of momentum in fluid (pg) and shock (pg) frames versus y, indicating
shock drift episodes interspersed with upstream diffusive hiatuses in energy gain;

, enables particle
convection downstream, and steepens spectrum.
Just like shock drift acceleration in non-relativistic investigations:




Spectral Properties of Diffusive
i Relativistic Shock Acceleration

= For small angle scattering, ultra-relativistic, parallel
shocks have a power-law index of 2.23 (Kirk et al. 2000);

s Result obtained from solution of diffusion/convection

equation and also Monte Carlo simulations (Bednarz &
Ostrowski 1996; Baring 1999; Ellison & Double 2004);

= Power-law index is . scattering angles
larger than Lorentz cone flatten distribution;

= Large angle scattering yields kinematic spectral
structure;

= In superluminal shocks, spectral index is generally a
strongly increasing function of field obliquity angle Bg,,.



