$$
\begin{aligned}
& \text { Fermi in the New Era } \\
& \text { of Radio Astronomy }
\end{aligned}
$$

Alexander van der Horst

Astronomical Institute Anton Pannekoek
University of Amsterdam

』\{ $\begin{aligned} & \text { Astronomical institute } \\ & \text { ANTON PANNEKOEK }\end{aligned}$

Current suite of radio arrays

- Very Large Array
- Westerbork Synthesis Radio Telescope
- Australian Telescope Compact Array
- Giant Metrewave Radio Telescope
- Ryle Telescope
- European VLBI Network
- Very Long Baseline Array
Larger - deeper - faster
- Very Large Array \rightarrow Jansky Very Large Array
- Westerbork Synthesis Radio Telescope \rightarrow Apertif
- Australian Telescope Compact Array
- Giant Metrewave Radio Telescope
- Ryle Telescope \rightarrow Arcminute Microkelvin Imager
- European VLBI Network \rightarrow e-EVN
- Very Long Baseline Array

New kids on the block

- Low Frequency Array
- Long Wavelength Array
- Murchison Widefield Array
- MeerKAT
- Australian Square Kilometer Array Pathfinder

Square Kilometer Array

New kids on the block

- Low Frequency Array
- MeerKAT
- Long Wavelength Array
- Murchison Widefield Array
- Australian Square Kilometer Array Pathfinder

> The (near) future looks radio bright!

Exploring the low frequency radio sky

- Epoch of Reionisation (redshifted HI \& CO lines):
- first structure formation during dark ages
- Deep extragalactic surveys (continuum \& lines):
- high-z galaxies, clusters, cosmic star formation history
- AGN physics \& evolution
- Cosmic magnetism (polarization surveys):
- magnetic field evolution in galaxies over cosmic time
- Ultra high energy cosmic rays
- Solar science \& space weather
- Transient sources

The transient low frequency radio sky

Incoherent emission

- Relatively slow variability
- Found mostly in images
- Explosive events \& jet sources
- Gamma-ray bursts
- Supernovae
- Magnetars
- X-ray binaries
- Active Galactic Nuclei
- Tidal disruption events

Coherent emission

- Relatively fast variability
- Found mostly in time series
- Largely unexplored, exciting new science
- Theoretical predictions, e.g. GRBs
- Possible Lorimer bursts

Low Frequency Array (LOFAR)

International LOFAR Telescope

Imaging survey speed

LOFAR with -0.7 spectral correction

LOFAR with -2.0 spectral correction

LOFAR with -2.0 spectral correction

Transient hunting with LOFAR

- Radio Sky Monitor / Zenith Monitoring Program

- Eight 7-beam LBA tiles (4500 deg²)
- Fourteen HBA tiles (1400 deg²)
- Phases with daily monitoring \Rightarrow mJy sensitivity
- AARTFAAC
- 24/7 all-sky monitor with 6 central stations
- Piggy-back mode in all LOFAR observations
- LBA: whole sky, HBA: 1000 deg² 2
- Transient Buffer Boards
- 5 second storage
- Dispersion delay \rightarrow subband approach

First LOFAR transient

- ~100 mJy, varying by factor 10
- No counterpart or pulsations
- Nature unkown

Broderick et al. 2012

LOFAR transient searches

- Multifrequency Snapshot Sky Survey
- Transient search in all fields, ind. 10 minute snapshots
- Simultaneous observations of North Celestial Pole: 280 images so far \rightarrow no transients found at Jy level
- LOFAR Cycle 0 starting in December
- Proposed coordinated observations with PanSTARRS and Palomar Transient Factory
- Very recently: LOFAR UK-Chibolton responding to Fermi \& Swift GRB triggers (1 hour follow-up)
\rightarrow first data taken after 20 seconds!

LOFAR-GBM correlative studies

- Fermi Guest Investigator program
- AJvdH, Kouveliotou, Younes, Wijers, Fender, Stappers
- Large fields of view \& transient search capabilities
- Gamma-ray bursts:
- Searching for radio coherent emission \rightarrow GBM triggers
- GRB energetics: prompt gamma-rays vs late-time radio
- Magnetars:
- Bursts and pulsed emission
- Giant flares
- Serendipity

Conclusions

- Dawn of a new radio era:
- Upgrades of new facilities
- Square Kilometer Array pathfinders
- Large fields of view
- Unprecedented sensitivity in broad radio bands
- Extensions of the frequency \& time domains
- Synergy with Fermi:
- Extragalactic surveys
- Transients at various timescales

